001     910149
005     20230502100726.0
024 7 _ |a 10.1109/IGARSS46834.2022.9883257
|2 doi
024 7 _ |a 2128/32035
|2 Handle
024 7 _ |a WOS:000920916600066
|2 WOS
037 _ _ |a FZJ-2022-03638
041 _ _ |a English
100 1 _ |a Aach, Marcel
|0 P:(DE-Juel1)180916
|b 0
|e Corresponding author
|u fzj
111 2 _ |a 2022 IEEE International Geoscience and Remote Sensing Symposium
|g IGARSS 2022
|c Kuala Lumpur
|d 2022-07-17 - 2022-07-22
|w Malaysia
245 _ _ |a Accelerating Hyperparameter Tuning of a Deep Learning Model for Remote Sensing Image Classification
260 _ _ |c 2022
|b IEEE
300 _ _ |a 263-266
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1666007802_30576
|2 PUB:(DE-HGF)
520 _ _ |a Deep Learning models have proven necessary in dealing with the challenges posed by the continuous growth of data volume acquired from satellites and the increasing complexity of new Remote Sensing applications. To obtain the best performance from such models, it is necessary to fine-tune their hyperparameters. Since the models might have massive amounts of parameters that need to be tuned, this process requires many computational resources. In this work, a method to accelerate hyperparameter optimization on a High-Performance Computing system is proposed. The data batch size is increased during the training, leading to a more efficient execution on Graphics Processing Units. The experimental results confirm that this method reduces the runtime of the hyperparameter optimization step by a factor of 3 while achieving the same validation accuracy as a standard training procedure with a fixed batch size.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a RAISE - Research on AI- and Simulation-Based Engineering at Exascale (951733)
|0 G:(EU-Grant)951733
|c 951733
|f H2020-INFRAEDI-2019-1
|x 1
536 _ _ |a PhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405)
|0 G:(DE-Juel1)PHD-NO-GRANT-20170405
|c PHD-NO-GRANT-20170405
|x 2
588 _ _ |a Dataset connected to CrossRef Conference
700 1 _ |a Sedona, Rocco
|0 P:(DE-Juel1)178695
|b 1
|u fzj
700 1 _ |a Lintermann, Andreas
|0 P:(DE-Juel1)165948
|b 2
|u fzj
700 1 _ |a Cavallaro, Gabriele
|0 P:(DE-Juel1)171343
|b 3
|u fzj
700 1 _ |a Neukirchen, Helmut
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Riedel, Morris
|0 P:(DE-Juel1)132239
|b 5
|u fzj
773 _ _ |a 10.1109/IGARSS46834.2022.9883257
856 4 _ |u https://juser.fz-juelich.de/record/910149/files/IGARSS2022_Aach_et_al.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:910149
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)180916
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)178695
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)165948
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)171343
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)132239
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2022
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21