000910153 001__ 910153
000910153 005__ 20230217124530.0
000910153 0247_ $$2doi$$a10.1103/PhysRevB.106.045135
000910153 0247_ $$2ISSN$$a1098-0121
000910153 0247_ $$2ISSN$$a2469-9977
000910153 0247_ $$2ISSN$$a0163-1829
000910153 0247_ $$2ISSN$$a0556-2805
000910153 0247_ $$2ISSN$$a1095-3795
000910153 0247_ $$2ISSN$$a1538-4489
000910153 0247_ $$2ISSN$$a1550-235X
000910153 0247_ $$2ISSN$$a2469-9950
000910153 0247_ $$2ISSN$$a2469-9969
000910153 0247_ $$2Handle$$a2128/32029
000910153 0247_ $$2WOS$$aWOS:000834359600002
000910153 037__ $$aFZJ-2022-03640
000910153 082__ $$a530
000910153 1001_ $$0P:(DE-Juel1)130643$$aFreimuth, Frank$$b0$$eCorresponding author
000910153 245__ $$aConstruction of the spectral function from noncommuting spectral moment matrices
000910153 260__ $$aWoodbury, NY$$bInst.$$c2022
000910153 264_1 $$2Crossref$$3online$$bAmerican Physical Society (APS)$$c2022-07-25
000910153 264_1 $$2Crossref$$3print$$bAmerican Physical Society (APS)$$c2022-07-01
000910153 3367_ $$2DRIVER$$aarticle
000910153 3367_ $$2DataCite$$aOutput Types/Journal article
000910153 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1674463526_17617
000910153 3367_ $$2BibTeX$$aARTICLE
000910153 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000910153 3367_ $$00$$2EndNote$$aJournal Article
000910153 520__ $$aThe LDA+U method is widely used to study the properties of realistic solids with strong electron correlations. One of its main shortcomings is that it does not provide direct access to the temperature dependence of material properties such as the magnetization, the magnetic anisotropy energy, the Dzyaloshinskii-Moriya interaction, the anomalous Hall conductivity, and the spin-orbit torque. While the method of spectral moments allows us in principle to compute these quantities directly at finite temperatures, the standard two-pole approximation can be applied only to Hamiltonians that are effectively of single-band type. We do a first step to explore if the method of spectral moments may replace the LDA+U method in first-principles calculations of correlated solids with many bands in cases where the direct assessment of the temperature dependence of equilibrium and response functions is desired: The spectral moments of many-band Hamiltonians of correlated electrons do not commute and therefore they do not possess a system of common eigenvectors. We show that nevertheless the spectral function may be constructed from the spectral moments by solving a system of coupled nonlinear equations. Additionally, we show how to compute the anomalous Hall conductivity of correlated electrons from this spectral function. We demonstrate the method for the Hubbard-Rashba model, where the standard two-pole approximation cannot be applied because spin-orbit interaction (SOI) couples the spin-up and the -down bands. In the quest for new quantum states that arise from the combination of SOI and correlation effects, the Hartree-Fock approximation is frequently used to obtain a first approximation for the phase diagram. We propose that using the many-band generalization of the self-consistent moment method instead of Hartree-Fock in such exploratory model calculations may improve the accuracy significantly, while keeping the computational burden low.
000910153 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
000910153 542__ $$2Crossref$$i2022-07-25$$uhttps://link.aps.org/licenses/aps-default-license
000910153 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000910153 7001_ $$0P:(DE-Juel1)130548$$aBlügel, Stefan$$b1
000910153 7001_ $$0P:(DE-Juel1)130848$$aMokrousov, Yuriy$$b2$$ufzj
000910153 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.106.045135$$bAmerican Physical Society (APS)$$d2022-07-25$$n4$$p045135$$tPhysical Review B$$v106$$x2469-9950$$y2022
000910153 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.106.045135$$gVol. 106, no. 4, p. 045135$$n4$$p045135$$tPhysical review / B$$v106$$x2469-9950$$y2022
000910153 8564_ $$uhttps://juser.fz-juelich.de/record/910153/files/PhysRevB.106.045135.pdf$$yOpenAccess
000910153 909CO $$ooai:juser.fz-juelich.de:910153$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000910153 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130643$$aForschungszentrum Jülich$$b0$$kFZJ
000910153 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b1$$kFZJ
000910153 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130848$$aForschungszentrum Jülich$$b2$$kFZJ
000910153 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
000910153 9141_ $$y2022
000910153 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000910153 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2021-05-04
000910153 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000910153 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000910153 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000910153 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-10-13
000910153 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-10-13
000910153 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2020-10-13
000910153 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-10-13
000910153 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-10-13
000910153 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-10-13
000910153 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-10-13
000910153 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-10-13
000910153 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-10-13
000910153 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-10-13
000910153 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2018$$d2020-10-13
000910153 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-10-13
000910153 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-10-13
000910153 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000910153 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000910153 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000910153 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000910153 980__ $$ajournal
000910153 980__ $$aVDB
000910153 980__ $$aI:(DE-Juel1)IAS-1-20090406
000910153 980__ $$aI:(DE-Juel1)PGI-1-20110106
000910153 980__ $$aI:(DE-82)080009_20140620
000910153 980__ $$aI:(DE-82)080012_20140620
000910153 980__ $$aUNRESTRICTED
000910153 9801_ $$aFullTexts
000910153 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/qua.24521
000910153 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.44.943
000910153 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.48.16929
000910153 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.50.16861
000910153 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.87.067205
000910153 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.5038353
000910153 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.89.174424
000910153 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/srep04491
000910153 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.104.094434
000910153 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.91.035004
000910153 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41535-020-00254-w
000910153 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevResearch.3.033033
000910153 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.99.115115
000910153 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.121.066601
000910153 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.96.094436
000910153 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0022-3697(66)90012-6
000910153 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.130.890
000910153 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.92.037204
000910153 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.82.1539
000910153 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.74.195118
000910153 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.90.174423
000910153 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/BF01313058
000910153 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.40.5015
000910153 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/BF01307842
000910153 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.64.014416
000910153 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0022-3697(71)80147-6
000910153 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/pssb.2220700209
000910153 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.38.2608
000910153 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1361-648X/ab51ff
000910153 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/19/10/106206
000910153 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1146/annurev-conmatphys-020911-125138
000910153 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1146/annurev-conmatphys-031218-013113
000910153 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.85.045124
000910153 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.87.155101
000910153 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0034-4885/78/10/106001
000910153 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nmat4360
000910153 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.88.045102
000910153 999C5 $$1W. Nolting$$2Crossref$$9-- missing cx lookup --$$a10.1007/978-3-540-71931-1$$y2009
000910153 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.91.115316
000910153 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.106.117202
000910153 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41524-019-0251-7
000910153 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.60.10763
000910153 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.105.115135