001     910153
005     20230217124530.0
024 7 _ |a 10.1103/PhysRevB.106.045135
|2 doi
024 7 _ |a 1098-0121
|2 ISSN
024 7 _ |a 2469-9977
|2 ISSN
024 7 _ |a 0163-1829
|2 ISSN
024 7 _ |a 0556-2805
|2 ISSN
024 7 _ |a 1095-3795
|2 ISSN
024 7 _ |a 1538-4489
|2 ISSN
024 7 _ |a 1550-235X
|2 ISSN
024 7 _ |a 2469-9950
|2 ISSN
024 7 _ |a 2469-9969
|2 ISSN
024 7 _ |a 2128/32029
|2 Handle
024 7 _ |a WOS:000834359600002
|2 WOS
037 _ _ |a FZJ-2022-03640
082 _ _ |a 530
100 1 _ |a Freimuth, Frank
|0 P:(DE-Juel1)130643
|b 0
|e Corresponding author
245 _ _ |a Construction of the spectral function from noncommuting spectral moment matrices
260 _ _ |a Woodbury, NY
|c 2022
|b Inst.
264 _ 1 |3 online
|2 Crossref
|b American Physical Society (APS)
|c 2022-07-25
264 _ 1 |3 print
|2 Crossref
|b American Physical Society (APS)
|c 2022-07-01
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1674463526_17617
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The LDA+U method is widely used to study the properties of realistic solids with strong electron correlations. One of its main shortcomings is that it does not provide direct access to the temperature dependence of material properties such as the magnetization, the magnetic anisotropy energy, the Dzyaloshinskii-Moriya interaction, the anomalous Hall conductivity, and the spin-orbit torque. While the method of spectral moments allows us in principle to compute these quantities directly at finite temperatures, the standard two-pole approximation can be applied only to Hamiltonians that are effectively of single-band type. We do a first step to explore if the method of spectral moments may replace the LDA+U method in first-principles calculations of correlated solids with many bands in cases where the direct assessment of the temperature dependence of equilibrium and response functions is desired: The spectral moments of many-band Hamiltonians of correlated electrons do not commute and therefore they do not possess a system of common eigenvectors. We show that nevertheless the spectral function may be constructed from the spectral moments by solving a system of coupled nonlinear equations. Additionally, we show how to compute the anomalous Hall conductivity of correlated electrons from this spectral function. We demonstrate the method for the Hubbard-Rashba model, where the standard two-pole approximation cannot be applied because spin-orbit interaction (SOI) couples the spin-up and the -down bands. In the quest for new quantum states that arise from the combination of SOI and correlation effects, the Hartree-Fock approximation is frequently used to obtain a first approximation for the phase diagram. We propose that using the many-band generalization of the self-consistent moment method instead of Hartree-Fock in such exploratory model calculations may improve the accuracy significantly, while keeping the computational burden low.
536 _ _ |a 5211 - Topological Matter (POF4-521)
|0 G:(DE-HGF)POF4-5211
|c POF4-521
|f POF IV
|x 0
542 _ _ |i 2022-07-25
|2 Crossref
|u https://link.aps.org/licenses/aps-default-license
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Blügel, Stefan
|0 P:(DE-Juel1)130548
|b 1
700 1 _ |a Mokrousov, Yuriy
|0 P:(DE-Juel1)130848
|b 2
|u fzj
773 1 8 |a 10.1103/physrevb.106.045135
|b American Physical Society (APS)
|d 2022-07-25
|n 4
|p 045135
|3 journal-article
|2 Crossref
|t Physical Review B
|v 106
|y 2022
|x 2469-9950
773 _ _ |a 10.1103/PhysRevB.106.045135
|g Vol. 106, no. 4, p. 045135
|0 PERI:(DE-600)2844160-6
|n 4
|p 045135
|t Physical review / B
|v 106
|y 2022
|x 2469-9950
856 4 _ |u https://juser.fz-juelich.de/record/910153/files/PhysRevB.106.045135.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:910153
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)130643
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130548
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130848
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5211
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2021-05-04
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-05-04
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-10-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-10-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2020-10-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-10-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-10-13
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-10-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-10-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-10-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-10-13
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-10-13
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV B : 2018
|d 2020-10-13
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-10-13
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-10-13
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts
999 C 5 |a 10.1002/qua.24521
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.44.943
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.48.16929
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.50.16861
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.87.067205
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.5038353
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.89.174424
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/srep04491
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.104.094434
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/RevModPhys.91.035004
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/s41535-020-00254-w
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevResearch.3.033033
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.99.115115
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.121.066601
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.96.094436
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0022-3697(66)90012-6
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRev.130.890
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.92.037204
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/RevModPhys.82.1539
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.74.195118
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.90.174423
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/BF01313058
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.40.5015
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/BF01307842
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.64.014416
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/S0022-3697(71)80147-6
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/pssb.2220700209
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.38.2608
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/1361-648X/ab51ff
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0953-8984/19/10/106206
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1146/annurev-conmatphys-020911-125138
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1146/annurev-conmatphys-031218-013113
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.85.045124
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.87.155101
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0034-4885/78/10/106001
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nmat4360
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.88.045102
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/978-3-540-71931-1
|1 W. Nolting
|2 Crossref
|9 -- missing cx lookup --
|y 2009
999 C 5 |a 10.1103/PhysRevB.91.115316
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.106.117202
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/s41524-019-0251-7
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.60.10763
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.105.115135
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21