000910157 001__ 910157
000910157 005__ 20240712100846.0
000910157 0247_ $$2doi$$a10.5194/gmd-15-7471-2022
000910157 0247_ $$2ISSN$$a1991-959X
000910157 0247_ $$2ISSN$$a1991-9603
000910157 0247_ $$2Handle$$a2128/32040
000910157 0247_ $$2WOS$$aWOS:000865444800001
000910157 037__ $$aFZJ-2022-03644
000910157 041__ $$aEnglish
000910157 082__ $$a550
000910157 1001_ $$0P:(DE-Juel1)129130$$aKonopka, Paul$$b0$$eCorresponding author
000910157 245__ $$aTropospheric transport and unresolved convection: numerical experiments with CLaMS 2.0/MESSy
000910157 260__ $$aKatlenburg-Lindau$$bCopernicus$$c2022
000910157 3367_ $$2DRIVER$$aarticle
000910157 3367_ $$2DataCite$$aOutput Types/Journal article
000910157 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1666009485_30574
000910157 3367_ $$2BibTeX$$aARTICLE
000910157 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000910157 3367_ $$00$$2EndNote$$aJournal Article
000910157 520__ $$aPure Lagrangian, i.e., trajectory-based transport models, take into account only the resolved advective part of transport. That means neither mixing processes between the air parcels (APs) nor unresolved subgrid-scale advective processes like convection are included. The Chemical Lagrangian Model of the Stratosphere (CLaMS 1.0) extends this approach by including mixing between the Lagrangian APs parameterizing the small-scale isentropic mixing. To improve model representation of the upper troposphere and lower stratosphere (UTLS), this approach was extended by taking into account parameterization of tropospheric mixing and unresolved convection in the recently published CLaMS 2.0 version. All three transport modes, i.e., isentropic and tropospheric mixing and the unresolved convection can be adjusted and optimized within the model. Here, we investigate the sensitivity of the model representation of tracers in the UTLS with respect to these three modes.For this reason, the CLaMS 2.0 version implemented within the Modular Earth Submodel System (MESSy), CLaMS 2.0/MESSy, is applied with meteorology based on the ERA-Interim (EI) and ERA5 (E5) reanalyses with the same horizontal resolution (1.0×1.0∘) but with 60 and 137 model levels for EI and E5, respectively. Comparisons with in situ observations are used to rate the degree of agreement between different model configurations and observations. Starting from pure advective runs as a reference and in agreement with CLaMS 1.0, we show that among the three processes considered, isentropic mixing dominates transport in the UTLS. Both the observed CO, O3, N2O, and CO2 profiles and CO–O3 correlations are clearly better reproduced in the model with isentropic mixing. The second most important transport process considered is convection which is only partially resolved in the vertical velocity fields provided by the analysis. This additional pathway of transport from the planetary boundary layer (PBL) to the main convective outflow dominates the composition of air in the lower stratosphere relative to the contribution of the resolved transport. This transport happens mainly in the tropics and sub-tropics, and significantly rejuvenates the age of air in this region. By taking into account tropospheric mixing, weakest changes in tracer distributions without any clear improvements were found.
000910157 536__ $$0G:(DE-HGF)POF4-2112$$a2112 - Climate Feedbacks (POF4-211)$$cPOF4-211$$fPOF IV$$x0
000910157 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x1
000910157 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000910157 7001_ $$0P:(DE-HGF)0$$aTao, Mengchu$$b1
000910157 7001_ $$0P:(DE-Juel1)129170$$avon Hobe, Marc$$b2
000910157 7001_ $$0P:(DE-Juel1)129125$$aHoffmann, Lars$$b3
000910157 7001_ $$0P:(DE-Juel1)161426$$aKloss, Corinna$$b4
000910157 7001_ $$00000-0003-0735-9297$$aRavegnani, Fabrizio$$b5
000910157 7001_ $$0P:(DE-HGF)0$$aVolk, C. Michael$$b6
000910157 7001_ $$0P:(DE-HGF)0$$aLauther, Valentin$$b7
000910157 7001_ $$0P:(DE-HGF)0$$aZahn, Andreas$$b8
000910157 7001_ $$00000-0001-6582-6864$$aHoor, Peter$$b9
000910157 7001_ $$0P:(DE-Juel1)129141$$aPloeger, Felix$$b10
000910157 773__ $$0PERI:(DE-600)2456725-5$$a10.5194/gmd-15-7471-2022$$gVol. 15, no. 19, p. 7471 - 7487$$n19$$p7471 - 7487$$tGeoscientific model development$$v15$$x1991-959X$$y2022
000910157 8564_ $$uhttps://juser.fz-juelich.de/record/910157/files/gmd-15-7471-2022.pdf$$yOpenAccess
000910157 909CO $$ooai:juser.fz-juelich.de:910157$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000910157 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129130$$aForschungszentrum Jülich$$b0$$kFZJ
000910157 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129170$$aForschungszentrum Jülich$$b2$$kFZJ
000910157 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129125$$aForschungszentrum Jülich$$b3$$kFZJ
000910157 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161426$$aForschungszentrum Jülich$$b4$$kFZJ
000910157 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129141$$aForschungszentrum Jülich$$b10$$kFZJ
000910157 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2112$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
000910157 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x1
000910157 9141_ $$y2022
000910157 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-26
000910157 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000910157 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-26
000910157 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-01-26
000910157 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000910157 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-01-26
000910157 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-25
000910157 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-01-16T18:00:10Z
000910157 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-01-16T18:00:10Z
000910157 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2021-01-16T18:00:10Z
000910157 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-25
000910157 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-25
000910157 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-25
000910157 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bGEOSCI MODEL DEV : 2021$$d2022-11-25
000910157 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-25
000910157 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-25
000910157 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-25
000910157 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bGEOSCI MODEL DEV : 2021$$d2022-11-25
000910157 920__ $$lyes
000910157 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000910157 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x1
000910157 9801_ $$aFullTexts
000910157 980__ $$ajournal
000910157 980__ $$aVDB
000910157 980__ $$aUNRESTRICTED
000910157 980__ $$aI:(DE-Juel1)IEK-7-20101013
000910157 980__ $$aI:(DE-Juel1)JSC-20090406
000910157 981__ $$aI:(DE-Juel1)ICE-4-20101013