000910159 001__ 910159
000910159 005__ 20250129092403.0
000910159 0247_ $$2Handle$$a2128/32027
000910159 037__ $$aFZJ-2022-03646
000910159 1001_ $$0P:(DE-Juel1)171680$$aVliex, Patrick$$b0$$eCorresponding author$$ufzj
000910159 1112_ $$aLASER World of PHOTONICS 2022: World of QUANTUM!$$cMünchen$$d2022-04-26 - 2022-04-29$$wGermany
000910159 245__ $$aScalable Cryogenic Qubit Control with Optimized CMOS Technologies
000910159 260__ $$c2022
000910159 3367_ $$033$$2EndNote$$aConference Paper
000910159 3367_ $$2BibTeX$$aINPROCEEDINGS
000910159 3367_ $$2DRIVER$$aconferenceObject
000910159 3367_ $$2ORCID$$aCONFERENCE_POSTER
000910159 3367_ $$2DataCite$$aOutput Types/Conference Poster
000910159 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1665652132_22449$$xOther
000910159 520__ $$aThe scalability of electrically controlled qubits beyond about a few hundred to a thousand qubits will be limited by signal line density. An attractive solution is to move classical functionality to the immediate vicinity of the qubits. In order to achieve the necessary functionality density, the use of highly integrated approaches, such as those enabled by modern CMOS technologies, is essential. CMOS offers advantages in terms of industrial development maturity and highest integration density. The challenges for the operation of CMOS electronics at cryogenic temperatures are on the one hand the low available cooling power (depending on the temperature range some milliwatts below 1 K to some watts below < 10 K) and on the other hand, the temperature range for which the technologies are specified, which is typically from -40 to +150°C. This includes technology characterization at below 10 K, which will be conducted at the Central Institute of Engineering, Electronics and Analytics - Electronic Systems (ZEA-2) at the Forschungszentrum Jülich in their cryostat needle probing setup, in order to create cryogenic models for one of the most promising CMOS technologies for cryogenic applications, the GlobalFoundries (GF) 22nm FDSOI technology.  In addition, a demonstrator IC for local cryogenic qubit control will be designed at the ZEA-2, which requires an optimized design and special circuit concepts for lowest power consumption and scalability as an active research field of the ZEA-2. The demonstrator IC will be fabricated by GF, displaying the full potential of the characterizations (cryogenic PDK) and cryogenic optimizations of the GF 22nm technology. This subproject thus contributes significantly to exploring new ways of scaling the number of simultaneously operable qubits far beyond what is possible with room-temperature electronics.
000910159 536__ $$0G:(DE-HGF)POF4-5223$$a5223 - Quantum-Computer Control Systems and Cryoelectronics (POF4-522)$$cPOF4-522$$fPOF IV$$x0
000910159 8564_ $$uhttps://q-solid.de/qsolid-posters/20220427_Poster_LASERWorld_Munich_WP5.pdf
000910159 8564_ $$uhttps://juser.fz-juelich.de/record/910159/files/20220427_Poster_LASERWorld_Munich_WP5.pdf$$yOpenAccess
000910159 909CO $$ooai:juser.fz-juelich.de:910159$$pdriver$$pVDB$$popen_access$$popenaire
000910159 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171680$$aForschungszentrum Jülich$$b0$$kFZJ
000910159 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5223$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
000910159 9141_ $$y2022
000910159 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000910159 9201_ $$0I:(DE-Juel1)ZEA-2-20090406$$kZEA-2$$lZentralinstitut für Elektronik$$x0
000910159 9201_ $$0I:(DE-Juel1)PGI-11-20170113$$kPGI-11$$lJARA Institut Quanteninformation$$x1
000910159 9801_ $$aFullTexts
000910159 980__ $$aposter
000910159 980__ $$aVDB
000910159 980__ $$aUNRESTRICTED
000910159 980__ $$aI:(DE-Juel1)ZEA-2-20090406
000910159 980__ $$aI:(DE-Juel1)PGI-11-20170113
000910159 981__ $$aI:(DE-Juel1)PGI-4-20110106