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The brick layer model in electrochemical impedance spectroscopy has been successfully used for decades to describe the behavior
of polycrystalline materials. Equivalent circuits were created to obtain information about grain and grain boundary properties from
electrochemical impedance spectroscopy measurements. Previous publications have expanded on initial interpretations and
described grains and grain boundaries as plate capacitors filled with the grain and grain boundary material, respectively. However,
this approach poses a number of significant issues, since key assumptions for the equivalent circuits do not match with the actual
experimental situation of the material when exposed to an outer electric field, thus calling into question the entire approach for the
interpretation.
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presents a physical derivation of the capacitive brick layer model exclusively based on fundamental equations of electrodynamics,
and shows the real material-related reasons for the capacitors used in electrochemical impedance spectroscopy.

Electrochemical impedance spectroscopy (EIS) is one of the
main techniques used to analyze inorganic materials, especially
polycrystalline samples, in order to distinguish, for example, grain
and grain boundary properties. The brick layer model represents a
simplified outline of the polycrystal that helps with the interpretation
of results detected by EIS. The first approach for describing the
experimental findings was introduced by Bauerle et al.1 and an
outline was described for two grains largely separated by one thin
layer comprised of entirely different material and properties com-
pared to the grains. An associated model was then derived for an
equivalent electric circuit for the bulk and the interphase layer: The
interlayer phase was assumed to be insulating, meaning that parts of
the conductive grains separated by the interphase appeared to be like
tiny plate capacitors. The key conclusion drawn was that such a
geometry would deliver another equivalent circuit, and that the time
constant of the equivalent circuit needed to be different from others
in order to explain the EIS measurements. It is important to
emphasize that only one additional capacitor resistor set is derived
for a combination of good-conducting and insulating media within
this interpretation. The brick layer model was subsequently devel-
oped in more detail by many other research groups e.g.,2–11

including polycrystals, where single-crystalline grains were sepa-
rated by grain boundaries. For the latter case, this is a significant
expansion of the model of Bauerle et al., since there are no longer
any conductive grains with distinct regions with immediate contact
and other regions where they are separated by insulating phases/
voids. There are instead phases that continuously separate the grains
and that are also conducting. In contrast to the initial model of
Bauerle et al. with one additional capacitor resistor set, such a
combination of two grains separated by a grain boundary was
described by two additional capacitor resistor sets (as seen in Fig. 1).
This accordingly leads to two semicircles in the Nyquist plot. The
grains and grain boundaries may have “plate capacitors” directly
associated with details of their microscopic properties: for example,
the thickness of the uniform region is equal to the distance of the
plates of the “plate capacitor” or the permittivity inside the
“capacitors” is equal to the permittivity of the grains and grain
boundaries, respectively. This is corroborated by the fact that the
ratio of time constants roughly scales well with the ratio of the

widths of the grains and grain boundaries, respectively (here,
“roughly” means that the individual ranges are given as several
orders of magnitude in capacitance values10).

When taking a closer look at the actual microscopic situation in
such a system, a number of questions can arise: Are there “capacitor
plates” that can be charged (fast enough) despite all phases being
somehow conductive ? If yes, then the capacitors cannot be
independent of each other (generally speaking the right plate of
one capacitor is identical to the left plate of the next one). Why does
the “outer capacitor” (i.e. the metal connect plates with the sample in
between, where the current leads of the impedance spectrometer are
connected) never appear experimentally in the case of blocking
electrodes in the Nyquist plots of EIS measurements or in the
equivalent circuit ? It is a real capacitor with a capacitance in the
range of 10% of the capacitance associated with the grain capaci-
tance in EIS. The material in this real capacitor, when polarized,
exhibits surface charges that have the opposite sign of charge of the
outer capacitor, which means that it has the “wrong” sign of charge
compared to a real capacitor in an electronic resistor capacitor
resonator circuit. Since Coulomb forces are long range, virtually all
available charges need to be considered in order to calculate the
actual electric fields in the sample. And why can thousands of grains
and grain boundaries be gathered so efficiently by just one capacitor
instead of sophisticated networks of tiny capacitors?

The aim of this work is to derive the capacitive brick layer model
from fundamental equations for the description of electrical fields.
The derivations show the opportunities and options for expanding
the brick layer model as well as its prerequisites and limitations.

The following descriptions also contain a summary of very basic
calculations of capacitors and a review of well-known character-
istics. Nevertheless, they are important for assessing which proper-
ties of capacitors and materials and which assumptions are actually
required.

Derivation of the Capacitance of a Capacitor Filled With Two
Different Materials

It is clear that these two types of charge carriers are distinct in
their electric properties, and it is therefore reasonable to describe
them separately, such as in two “bands.”

We will now focus on the charge carriers that create polarization
and do not move macroscopically, which means that this part of the
sample can be regarded as insulating. An insulating material withzE-mail: s.uhlenbruck@fz-juelich.de
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charges that can be slightly displaced by an electric field is referred
to as dielectric.

The next paragraph is a short review of the derivation of the
capacitances of capacitors, including certain materials with dielectric
properties, taken from.12,13

The first assumption is that the system acts in a linear manner
(i.e. all equations including differential equations are linear), the
electric field behaves like a vector, and the principle of linear
superposition is given.

Here, we consider one plane of negligible thickness with an
“infinite” planar extension that is positively and homogeneously
charged with a certain areal charge density s, and no other charges
are present anywhere. The term “infinite” here means that the
extension may be large compared to other relevant length scales in
the system. In anticipation of the future brick layer model, the
constant charge density is one important aspect. The electric field
vector of such a plane is perpendicular to the plane due to symmetry
reasons. We then add a second plane that is parallel to the first one at
a distance d and has the same areal charge density s but with the
opposite sign of charge. The electric force is known to be long range,
meaning that the calculation of the electric field at each position
must take all charges into account. The resulting field is obtained by
a linear superposition of the electric fields of the two planes: double
electric field between the planes; no field outside of the planes. The
electric field inside the plane can be calculated using the Maxwell
equation div E = ρ/ε0, where ρ denotes the charge density in a
certain volume V, E depicts the electric field vector resulting from all
charges (including polarization charges) within such a volume V,
and ε0 represents the electric field constant. (All elements that
exhibit vector-like transformation behavior are denoted in bold
letters in this work.) By using the Gauss integral theorem
∰ = ∯E E Adiv dV d

V S for a given volume V and the entire
surface S of this volume and by integrating the cuboid box-shaped
integral volume depicted in Fig. 2, E0 = s/ε0 is obtained for the field
inside the planes.

A plate capacitor is defined by a set of two parallel thin planes
with lateral dimensions that are large compared to their distance d. In
the future, for EIS, fast charging and discharging of the capacitor
planes by AC voltage will be required. However, there has so far
been no need for any real metal plates or similar to have a capacitor.
There are no “shielding” effects of a metal, no electrical grounding,
or any other voltage/current sources connected. The area of one plate
is A and the charge accumulated on one plate is Q0. The areal charge
density s is then s = Q0/A. This is now the model of the “outer”
capacitor which was briefly outlined in the introduction. In an EIS

experiment, the casing with metal plates, which connect the
polycrystalline sample to the current leads, acts as the outer
capacitor.

Here, we consider the work W of a (virtual) test charge q going
from one plate to the other (the electric force F = qE is used here):

∫ ∫ ∫ ε
= = = = [ ]F sW d qE dx qE dx q

Q

A
d 1

d d d

0 0
0 0

0

0

0

The potential U is defined by U = W/q. Potential differences
define the voltage (specifically the voltage in absence of chemical
potentials in order to accept that voltages in general are differences
in the electrochemical potential).

The capacitance C is defined by the charge Q that an object can
accumulate when a voltage U is applied

= / [ ]C Q U 2

The definition does not depend on any particular geometries,
designs, or technical construction peculiarities of the capacitor. All
objects that can accumulate charge by applying a voltage, regardless of
their construction, are capacitors. Since the analysis here is restricted to
linear systems, a linearity of Q and U is also presumed in the following.
This proportionality is necessary for deriving the semicircles in the
Nyquist plot for an electrical network set of a resistor and a capacitor
connected in parallel, which is used in EIS, for example.

Figure 1. Typical equivalent circle for the description of grains and grains boundaries in polycrystals analyzed by electrochemical impedance spectroscopy.

Figure 2. Diagram of a cross section of a plate capacitor. (The requirement
of large (“infinite”) capacitor plates compared to distance d is not depicted in
the diagram for the purpose of clarity).
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The capacitance of a plate capacitor is Cplate capacitor = ε0 A/d
(see Eq. 1), with a proportionality of Q and U, and thus a constant
capacitance (i.e. independent of Q and U) is given.

In this paragraph, the case of a capacitor filled with one
homogeneous material is discussed. As previously highlighted, the
effects of part of the material being polarized are described by
charge carriers that cannot leave their local environment by applying
a voltage. This means that the system can be described as a dielectric
that has a polarization P (Fig. 3). P has a fundamental connection to
the superficial charge density spol of the sample: spol = P.13

Considering the additional charges originating from the polariza-
tion P of a material inside a charged capacitor, the Maxwell equation
comprising all charges is as follows:

ε ε
= − [ ]E

s P
3

0 0

For subsequent EIS, it is essential that there is a linearity between E
and P, otherwise overtone-like modulations and more deviations
would appear.14 Therefore, the derivation would not be valid for
ferroelectric materials, for instance. The proportionality of P and E is
typically written as χε=P E,0 and the constant χ defined in this way
is referred to as the electric susceptibility. For subsequent EIS, it is
further assumed that the electric susceptibility does not depend on
the frequencies used in EIS, and also does not have imaginary parts.

Putting χε=P E0 into Eq. 3 leads to:

ε χ
=

+
[ ]E

s 1

1
4

0

This shows a reduced effective electric field inside a capacitor
filled with a dielectric compared to a capacitor with a vacuum
between the capacitor plates, since the polarization charges of the
material have the opposite sign compared to the charge of the
capacitor plates.

The capacitance of the capacitor with material can be calculated
analogously to Eq. 1 as

χ ε ε χ ε= ( + ) = + [ ]C
A

d

A

d

A

d
1 50 0 0

The factor εr which is determined by ε χ= +1 ,r the ratio of the
capacitance of a plate capacitor filled with material to the capaci-
tance of an empty capacitor is the definition of the dielectric constant
or permittivity of the material.

The second part of Eq. 5 states that the material along with the
locally mobile charge carriers that create a polarization can be
described in the same way as a capacitor (provided the polarization
is proportional to the electric field). Since a capacitor is only defined
by Eq. 2, C = Q/U, the material itself is a capacitor, regardless of its
specific construction.

Only the charge Q is relevant, not the type of charge carrier. It
could be any cation or anion in a crystal, and, with respect to EIS, it

is not necessary that these charge carriers are the same as the type of
charge carriers that are responsible for a macroscopic charge flow
(a current).

Here, a sample comprising two different materials in a capacitor
is analyzed. Figure 4 shows a capacitor filled with a material 1 with a
thickness of x, followed by a different material 2 with a thickness of
l, which is again followed by a material 1 with a thickness of d-x-l.
Both materials are assumed to be homogeneous, including a
homogeneous polarization. With the same approach as for one
homogeneous material in a capacitor (integration of Maxwell law in
the region of the plates, integration boxes 1 and 2), the electric field

E1 in material 1 is =
ε

E ,E
1

r

0

,1
where ε= /E s .0 0

Using the larger integration volume (box 3) in Fig. 3, the electric
field E2 in material 2 can be calculated as:

ρ
ε

ε ε

= ∯ = ∰ = ∰

= = −

E A div EE A d dV dV

Q s s

S V V

in box Pol

2
0

0

2

0

The overall charge (i.e. surface charge) contributions of material
1 level out, as the polarized material as a whole remains electrically
neutral. It follows with χ ε= =s P Epol 2 2 2 0 2 and ε χ= +1r,2 2 that

=
ε

E .E
2

r

0

,2

The capacitance of such a capacitor is derived in the same way as
for the empty capacitor, using Eqs. 1 and 2:

∫ ∫ ∫ ∫ ∫

∫ ∫ ∫

∫ ∫ ∫

= = = + +

= + +

= + +

= + + ( − ( + ))

+

+
+

+
+

+
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Using the equations C = Q/U, =
ε

E ,E
1

r

0

,1
=

ε
E E

2
r
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,2
and ε= /E Q A,0 0 it

follows that:

ε

ε ε ε

=
+ + − − [ ]C

A
x l d x l

6

r r r

0

,1 ,2 ,1

Here, the inverse value of C in Eq. 6 is analyzed:

ε ε ε
ε ε ε ε ε ε ε

ε ε ε ε ε ε

=
+ + − −

= + + − −

= + +

− −

= + +

C

x l d x l
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1
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r r r

r r r

r r r

,1 ,2 ,1
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0 ,1 0 ,2 0 ,1 1 2 3

These formulae are such that the overall capacitance of the entire
set of the outer capacitor and two different materials with individual
polarizations within the capacitor plates can be described by a serial
connection of three distinct capacitors, C1, C2 and C3, with the
following capacitances:

ε ε ε ε ε ε
= = =

− −
C

A

x
C

A

l
C

A

d x l
, andr r r

1
0 ,1

2
0 ,2

3
0 ,1

They look like capacitors that exactly match the properties and
dimensions of individual parts of the sample with materials 1 and 2
between the outer capacitor plates: for example, the distance of the
“plates” is equal to the thickness of the individual homogeneous
regions, and they have the correct single εr i, values. For the purpose

Figure 3. Diagram of a cross section of a plate capacitor completely filled
with a material that is polarized by the electric field of the outer capacitor.
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of clarity, there are no real capacitors consisting of “capacitor plates”
or similar, but the outer capacitor has been “absorbed” to this new
equivalent circuit. It is also important to stress that the capacitors of
the constructed capacitance equivalent circuit are not independent of
each other, but are linked by the parameter l.

The term x in the formulae can be completely disregarded—it
was purposefully not deleted in order to illustrate the shape of the
equivalent circuit with the three capacitors. In other words, the
position of the region of material 2 can be arbitrarily shifted between
the outer capacitor plates. This provides a degree of freedom in the
construction of the brick layer model.

Another important aspect for the capacitances is the expansion to
even more complex series. The result would be exactly the same if
there were two separated areas with ε ,r,2 each with a thickness of l/2,
and three surrounding regions with εr,1 filling the rest of the
capacitor, or a sample with a thickness of d≈1 cm, with 10,000
grains with an individual length of dgrain = 1 μm, and 9,999 grain
boundaries each with a thickness of lgb = 10 nm between them
(l≈1 μm in this example).

The ratio of grain capacitance to grain boundary capacitance is
given by:

ε ε
ε ε

ε
ε

ε
ε

=
/( − )

/
=

−

=
−

C

C

A d l

A l

l

d l

l

d l

grain

gb

r grain

r gb

r grain

r gb

r grain

r gb

gb

grain gb

, 0

, 0

,

,

,

,

This is an extension of the corresponding formula 4 in.10

In summary, even the situation with many grains and grain
boundaries is described by only one capacitor for all the grains, and
one for all the grain boundaries. This is the reason why the simple
equivalent circuit, as shown in Fig. 1, works so well for the
description of a large number of grains and grain boundaries rather
than using a huge network of capacitors for the description of EIS
data.

ε ε≠r r,1 ,2 is a prerequisite for having more than one effective
capacitor in the equivalent circuit (the length l cannot be determined
if ε ε=r r,1 ,2). If ε ε= ,r r,1 ,2 Eq. 6 would only describe a capacitor
filled with one homogeneous material, meaning that only one
semicircle would appear in the Nyquist plot.

The derivation can be expanded in the same way to more layers
with different permittivities at any position within the outer
capacitor, provided that all layers are plane-parallel, as outlined in
Fig. 4. Each additional layer with a different permittivity adds one

more capacitor with a capacitance of = ε ε
Ci

A

x
r i

i

0 , to the equivalent

circuit, with xi denoting the (overall) thickness of the layer and εr i,

depicting the permittivity.
As previously mentioned, the thicknesses of the material layers in

Fig. 4 do not necessarily need to be identical (e.g. 1 μm). It is

therefore tempting to fragment real grains with an irregular shape
into tiny bricks (e.g. crystal unit cells in a cubic system) and to apply
the calculations of the previous sections accordingly. However, this
is not a valid approach, since the dimensions of the capacitor plates
need to be large compared to the other relevant dimensions in order
to obtain the homogeneous electric field oriented perpendicular to
the capacitor plates. For other geometries, corrections of local fields
(i.e. local currents in EIS) need to be taken into account, for example
depolarization factors.7 For this reason, the model can only be
applied in a brick layer model where bricks may have varying
thickness in the x direction (as defined in Fig. 2) but always with
common grain boundary layers in between them (Fig. 5).

In a real crystal, phases with different conductivities may appear,
meaning that the current flow may be locally irregular. As the
electric field is always perpendicular to the local current flow, the
geometry of the effective capacitances and resistances becomes even
more complex. A more detailed description requires more complex
resistor capacitor networks (see e.g.15).

At first glance, Figs. 2 to 5 might exclusively provide a
description of an electrostatic problem and its solution. However,
the fundamental equation for electrostatic problems, =Erot 0, was
not required at any stage. Therefore, the figures can also be
interpreted as flashlight images of an electrodynamic system.

Conclusions

The description of the electrochemical impedance spectroscopy
of polycrystals using a capacitive brick layer model was reviewed. In
addition, the description of grains and grain boundaries by capacitors
was strictly derived from fundamental equations for the electric
fields in matter, and previous equations for its description were
expanded. The current collector/casing as an outer capacitor in
conjunction with the polarization charges of the materials within this
capacitor accurately create all capacitances observed experimentally
in EIS as well as in the equivalent circuits. Thus, no other
mechanisms are required to build up more capacitors. In particular,
the charge carriers in the “conduction band” (i.e. those that can leave
their local environment) only contribute to pure charge transport
through elements that are associated with electrical transport in
resistors. There is, of course, the exception of blocking electrodes,
where the mobile charge carriers move inside the sample more or
less freely in the electric field of the outer capacitor and accumulate
at the charge carrier blocking interface, thus creating another
capacitor with a higher capacitance value than, for example, bulk
or grain boundary polarization.10

Figure 5. Diagram of a cross section of a plate capacitor filled with two
distinct materials in a more complex manner as an expansion of the brick
layer model (see e.g. Fig. 2 in10). The dashed lines illustrate the approxi-
mated equipotential lines. The values of xi and li may be arbitrary, as long as
the “sides” of the grains are parallel to the equipotential lines of the electric
field. The values zi may be small to mimic the situation shown in Fig. 4.

Figure 4. Diagram of a cross section of a plate capacitor filled with two
distinct materials with permittivity values ε ,r i, which are polarized by the
effective electric fields within the capacitor plates.
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It was highlighted that differences in the permittivity values for
grains and grain boundaries are required for the description with two
distinct capacitors in the typical equivalent circuits. Not all single
grains or grain boundaries of a polycrystal need to be described by
separate capacitors, but they can be integrated in one capacitor for
each permittivity value.

The results also inform about two aspects of the experimental set-
up for EIS. Firstly, the dimensions of the outer capacitor plates may
be large compared to their distance. Secondly, the sample should be
cylindrical in shape, and the top cylinder surfaces should exactly
match the shape of the outer capacitor plates: it was essential for the
derivation that the outer capacitor and the sample both have an
identical area A. For larger samples, the stray fields of the outer
capacitor may impact the actual capacitance. If the plate capacitor
has a larger plate area than the sample, there will be an additional
effective capacitor parallel to the capacitor-sample set-up, which
needs to be taken into consideration in the equivalent circuit.
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