000910196 001__ 910196
000910196 005__ 20230123110658.0
000910196 0247_ $$2doi$$a10.1021/acs.macromol.2c01121
000910196 0247_ $$2ISSN$$a0024-9297
000910196 0247_ $$2ISSN$$a1520-5835
000910196 0247_ $$2Handle$$a2128/32325
000910196 0247_ $$2WOS$$aWOS:000849798100001
000910196 037__ $$aFZJ-2022-03676
000910196 041__ $$aEnglish
000910196 082__ $$a540
000910196 1001_ $$0P:(DE-HGF)0$$aLunkad, Raju$$b0
000910196 245__ $$aSimulations and Potentiometric Titrations Enable Reliable Determination of Effective p K a Values of Various Polyzwitterions
000910196 260__ $$aWashington, DC$$bSoc.$$c2022
000910196 3367_ $$2DRIVER$$aarticle
000910196 3367_ $$2DataCite$$aOutput Types/Journal article
000910196 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1667471931_9517
000910196 3367_ $$2BibTeX$$aARTICLE
000910196 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000910196 3367_ $$00$$2EndNote$$aJournal Article
000910196 520__ $$aWe synthesized three different polyzwitterions─poly(N,N-diallyl glutamate) (PDAGA), poly(dehydroalanine) (PDha), and poly(2-(imidazol-1-yl)acrylic acid) (PImAA)─and investigated how their ionization states respond to changes in solution pH. We used molecular simulations to determine how the net charge per monomer and the ionization states of individual acidic and basic groups differ from the ideal (Henderson–Hasselbalch) behavior. To complement the theoretical predictions, we performed potentiometric titrations and zeta-potential measurements of all studied polyzwitterions. By comparing these experiments with theoretical predictions, we could show that molecular simulations can predict and explain the origin of the differences between the effective and bare pKa values of individual titratable groups. Furthermore, we have shown that it is not possible to obtain these effective pKa values directly from the equivalence point recognition criterion (ERC), commonly used in potentiometric titrations. However, the effective pKa values can be reliably obtained by calculating the net charge per monomer from the potentiometric titration curves and validating these results against theoretical predictions. The approach we propose works reliably for polyzwitterions in which the ionization response is dominated by electrostatic interactions, such as PDAGA or PDha; however, it fails if other specific interactions contribute significantly, such as in the case of PImAA.
000910196 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x0
000910196 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x1
000910196 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000910196 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x0
000910196 65017 $$0V:(DE-MLZ)GC-1602-2016$$2V:(DE-HGF)$$aPolymers, Soft Nano Particles and  Proteins$$x0
000910196 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000910196 7001_ $$0P:(DE-HGF)0$$aBiehl, Philip$$b1
000910196 7001_ $$0P:(DE-Juel1)187024$$aMurmiliuk, Anastasiia$$b2
000910196 7001_ $$0P:(DE-HGF)0$$aBlanco, Pablo M.$$b3
000910196 7001_ $$0P:(DE-HGF)0$$aMons, Peter$$b4
000910196 7001_ $$00000-0002-7636-7234$$aŠtěpánek, Miroslav$$b5
000910196 7001_ $$00000-0003-4685-6608$$aSchacher, Felix H.$$b6$$eCorresponding author
000910196 7001_ $$00000-0002-6708-3344$$aKošovan, Peter$$b7$$eCorresponding author
000910196 773__ $$0PERI:(DE-600)1491942-4$$a10.1021/acs.macromol.2c01121$$gVol. 55, no. 17, p. 7775 - 7784$$n17$$p7775 - 7784$$tMacromolecules$$v55$$x0024-9297$$y2022
000910196 8564_ $$uhttps://juser.fz-juelich.de/record/910196/files/acs.macromol.2c01121.pdf
000910196 8564_ $$uhttps://juser.fz-juelich.de/record/910196/files/Manuscript-zwitterion-polymers.pdf$$yOpenAccess
000910196 909CO $$ooai:juser.fz-juelich.de:910196$$pdnbdelivery$$pVDB$$pVDB:MLZ$$pdriver$$popen_access$$popenaire
000910196 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b0$$kExtern
000910196 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b1$$kExtern
000910196 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187024$$aForschungszentrum Jülich$$b2$$kFZJ
000910196 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b3$$kExtern
000910196 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b4$$kExtern
000910196 9101_ $$0I:(DE-HGF)0$$60000-0002-7636-7234$$aExternal Institute$$b5$$kExtern
000910196 9101_ $$0I:(DE-HGF)0$$60000-0003-4685-6608$$aExternal Institute$$b6$$kExtern
000910196 9101_ $$0I:(DE-HGF)0$$60000-0002-6708-3344$$aExternal Institute$$b7$$kExtern
000910196 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x0
000910196 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lFrom Matter to Materials and Life$$vMaterials – Quantum, Complex and Functional Materials$$x1
000910196 9141_ $$y2022
000910196 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000910196 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000910196 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000910196 915__ $$0StatID:(DE-HGF)1200$$2StatID$$aDBCoverage$$bChemical Reactions$$d2021-01-28
000910196 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-11$$wger
000910196 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-11
000910196 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-11
000910196 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-11
000910196 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-11
000910196 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-11
000910196 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMACROMOLECULES : 2021$$d2022-11-11
000910196 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-11
000910196 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-11
000910196 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bMACROMOLECULES : 2021$$d2022-11-11
000910196 920__ $$lyes
000910196 9201_ $$0I:(DE-Juel1)JCNS-4-20201012$$kJCNS-4$$lJCNS-4$$x0
000910196 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x1
000910196 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x2
000910196 980__ $$ajournal
000910196 980__ $$aVDB
000910196 980__ $$aUNRESTRICTED
000910196 980__ $$aI:(DE-Juel1)JCNS-4-20201012
000910196 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000910196 980__ $$aI:(DE-588b)4597118-3
000910196 9801_ $$aFullTexts