000910204 001__ 910204
000910204 005__ 20230731203854.0
000910204 0247_ $$2doi$$a10.1523/JNEUROSCI.2439-21.2022
000910204 0247_ $$2ISSN$$a0270-6474
000910204 0247_ $$2ISSN$$a1529-2401
000910204 0247_ $$2Handle$$a2128/32037
000910204 0247_ $$2pmid$$a35241492
000910204 0247_ $$2WOS$$aWOS:000789016600003
000910204 037__ $$aFZJ-2022-03681
000910204 082__ $$a610
000910204 1001_ $$0P:(DE-Juel1)161592$$aComini, Maddalena$$b0
000910204 245__ $$aCLC Anion/Proton Exchangers Regulate Secretory Vesicle Filling and Granule Exocytosis in Chromaffin Cells
000910204 260__ $$aWashington, DC$$bSoc.$$c2022
000910204 264_1 $$2Crossref$$3online$$bSociety for Neuroscience$$c2022-03-03
000910204 264_1 $$2Crossref$$3print$$bSociety for Neuroscience$$c2022-04-13
000910204 264_1 $$2Crossref$$3print$$bSociety for Neuroscience$$c2022-04-13
000910204 3367_ $$2DRIVER$$aarticle
000910204 3367_ $$2DataCite$$aOutput Types/Journal article
000910204 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1690794576_18350
000910204 3367_ $$2BibTeX$$aARTICLE
000910204 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000910204 3367_ $$00$$2EndNote$$aJournal Article
000910204 520__ $$aClC-3, ClC-4, and ClC-5 are electrogenic chloride/proton exchangers that can be found in endosomal compartments of mammalian cells. Although the association with genetic diseases and the severe phenotype of knock-out animals illustrate their physiological importance, the cellular functions of these proteins have remained insufficiently understood. We here study the role of two Clcn3 splice variants, ClC-3b and ClC-3c, in granular exocytosis and catecholamine accumulation of adrenal chromaffin cells using a combination of high-resolution capacitance measurements, amperometry, protein expression/gene knock out/down, rescue experiments, and confocal microscopy. We demonstrate that ClC-3c resides in immature as well as in mature secretory granules, where it regulates catecholamine accumulation and contributes to the establishment of the readily releasable pool of secretory vesicles. The lysosomal splice variant ClC-3b contributes to vesicle priming only with low efficiency and leaves the vesicular catecholamine content unaltered. The related Cl−/H+ antiporter ClC-5 undergoes age-dependent downregulation in wild-type conditions. Its upregulation in Clcn3−/− cells partially rescues the exocytotic mutant defect. Our study demonstrates how different CLC transporters with similar transport functions, but distinct localizations can contribute to vesicle functions in the regulated secretory pathway of granule secretion in chromaffin cells.
000910204 536__ $$0G:(DE-HGF)POF4-5253$$a5253 - Neuroimaging (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000910204 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x1
000910204 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000910204 7001_ $$0P:(DE-Juel1)171791$$aSierra-Marquez, Juan$$b1
000910204 7001_ $$0P:(DE-Juel1)165956$$aGuzman, Gustavo$$b2$$ufzj
000910204 7001_ $$0P:(DE-Juel1)131923$$aFranzen, Arne$$b3$$ufzj
000910204 7001_ $$0P:(DE-Juel1)144347$$aWilluweit, Antje$$b4$$ufzj
000910204 7001_ $$00000-0002-0955-8911$$aKatona, Istvan$$b5
000910204 7001_ $$0P:(DE-Juel1)151357$$aHidalgo, Patricia$$b6$$ufzj
000910204 7001_ $$0P:(DE-Juel1)136837$$aFahlke, Christoph$$b7$$ufzj
000910204 7001_ $$0P:(DE-Juel1)156375$$aGuzman, Raul E.$$b8$$eCorresponding author$$ufzj
000910204 77318 $$2Crossref$$3journal-article$$a10.1523/jneurosci.2439-21.2022$$bSociety for Neuroscience$$d2022-03-03$$n15$$p3080-3095$$tThe Journal of Neuroscience$$v42$$x0270-6474$$y2022
000910204 773__ $$0PERI:(DE-600)1475274-8$$a10.1523/JNEUROSCI.2439-21.2022$$gVol. 42, no. 15, p. 3080 - 3095$$n15$$p3080-3095$$tThe journal of neuroscience$$v42$$x0270-6474$$y2022
000910204 8564_ $$uhttps://juser.fz-juelich.de/record/910204/files/Invoice_JNeurosci07666.pdf
000910204 8564_ $$uhttps://juser.fz-juelich.de/record/910204/files/zns3080.pdf$$yPublished on 2022-04-13. Available in OpenAccess from 2022-10-13.
000910204 8767_ $$8JNeurosci07666$$92022-02-08$$d2022-02-18$$eHybrid-OA$$jZahlung erfolgt$$zBelegnr. 1200177586 ; USD 2295,-
000910204 909CO $$ooai:juser.fz-juelich.de:910204$$pdnbdelivery$$popenCost$$pVDB$$popenaire$$pdriver$$pOpenAPC$$popen_access
000910204 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171791$$aForschungszentrum Jülich$$b1$$kFZJ
000910204 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165956$$aForschungszentrum Jülich$$b2$$kFZJ
000910204 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131923$$aForschungszentrum Jülich$$b3$$kFZJ
000910204 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144347$$aForschungszentrum Jülich$$b4$$kFZJ
000910204 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151357$$aForschungszentrum Jülich$$b6$$kFZJ
000910204 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)136837$$aForschungszentrum Jülich$$b7$$kFZJ
000910204 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156375$$aForschungszentrum Jülich$$b8$$kFZJ
000910204 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5253$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000910204 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x1
000910204 9141_ $$y2022
000910204 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000910204 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000910204 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-30
000910204 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000910204 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-01-30
000910204 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-30
000910204 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-30
000910204 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000910204 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ NEUROSCI : 2019$$d2021-01-30
000910204 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2021-01-30
000910204 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000910204 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-30
000910204 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-30
000910204 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ NEUROSCI : 2019$$d2021-01-30
000910204 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-30
000910204 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-01-30
000910204 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-30
000910204 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0
000910204 9201_ $$0I:(DE-Juel1)IBI-1-20200312$$kIBI-1$$lMolekular- und Zellphysiologie$$x1
000910204 9201_ $$0I:(DE-Juel1)IBI-7-20200312$$kIBI-7$$lStrukturbiochemie$$x2
000910204 980__ $$ajournal
000910204 980__ $$aVDB
000910204 980__ $$aI:(DE-Juel1)INM-4-20090406
000910204 980__ $$aI:(DE-Juel1)IBI-1-20200312
000910204 980__ $$aI:(DE-Juel1)IBI-7-20200312
000910204 980__ $$aAPC
000910204 980__ $$aUNRESTRICTED
000910204 9801_ $$aAPC
000910204 9801_ $$aFullTexts