000910206 001__ 910206
000910206 005__ 20231027114346.0
000910206 0247_ $$2doi$$a10.1093/neuonc/noac229
000910206 0247_ $$2ISSN$$a1522-8517
000910206 0247_ $$2ISSN$$a1523-5866
000910206 0247_ $$2Handle$$a2128/34417
000910206 0247_ $$2pmid$$a36215231
000910206 0247_ $$2WOS$$aWOS:000881636600001
000910206 037__ $$aFZJ-2022-03683
000910206 082__ $$a610
000910206 1001_ $$0P:(DE-Juel1)190394$$aWollring, Michael M$$b0
000910206 245__ $$aPrediction of response to lomustine-based chemotherapy in glioma patients at recurrence using MRI and FET PET
000910206 260__ $$aOxford$$bOxford Univ. Press$$c2023
000910206 3367_ $$2DRIVER$$aarticle
000910206 3367_ $$2DataCite$$aOutput Types/Journal article
000910206 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1684222545_30060
000910206 3367_ $$2BibTeX$$aARTICLE
000910206 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000910206 3367_ $$00$$2EndNote$$aJournal Article
000910206 520__ $$aBackgroundWe evaluated O-(2-[18F]fluoroethyl)-l-tyrosine (FET) PET and MRI for early response assessment in recurrent glioma patients treated with lomustine-based chemotherapy.MethodsThirty-six adult patients with WHO CNS grade 3 or 4 gliomas (glioblastoma, 69%) at recurrence (median number of recurrences, 1; range, 1–3) were retrospectively identified. Besides MRI, serial FET PET scans were performed at baseline and early after chemotherapy initiation (not later than two cycles). Tumor-to-brain ratios (TBR), metabolic tumor volumes (MTV), the occurrence of new distant hotspots with a mean TBR >1.6 at follow-up, and the dynamic parameter time-to-peak were derived from all FET PET scans. PET parameter thresholds were defined using ROC analyses to predict PFS of ≥6 months and OS of ≥12 months. MRI response assessment was based on RANO criteria. The predictive values of FET PET parameters and RANO criteria were subsequently evaluated using univariate and multivariate survival estimates.ResultsAfter treatment initiation, the median follow-up time was 11 months (range, 3–71 months). Relative changes of TBR, MTV, and RANO criteria predicted a significantly longer PFS (all P ≤ .002) and OS (all P ≤ .045). At follow-up, the occurrence of new distant hotspots (n ≥ 1) predicted a worse outcome, with significantly shorter PFS (P = .005) and OS (P < .001). Time-to-peak changes did not predict a significantly longer survival. Multivariate survival analyses revealed that new distant hotspots at follow-up FET PET were most potent in predicting non-response (P < .001; HR, 8.578).ConclusionsData suggest that FET PET provides complementary information to RANO criteria for response evaluation of lomustine-based chemotherapy early after treatment initiation.
000910206 536__ $$0G:(DE-HGF)POF4-5253$$a5253 - Neuroimaging (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000910206 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x1
000910206 536__ $$0G:(DE-HGF)POF4-5252$$a5252 - Brain Dysfunction and Plasticity (POF4-525)$$cPOF4-525$$fPOF IV$$x2
000910206 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000910206 7001_ $$0P:(DE-HGF)0$$aWerner, Jan-Michael$$b1
000910206 7001_ $$0P:(DE-HGF)0$$aBauer, Elena K$$b2
000910206 7001_ $$0P:(DE-Juel1)171739$$aTscherpel, Caroline$$b3
000910206 7001_ $$0P:(DE-HGF)0$$aCeccon, Garry S$$b4
000910206 7001_ $$0P:(DE-Juel1)145110$$aLohmann, Philipp$$b5
000910206 7001_ $$0P:(DE-Juel1)131627$$aStoffels, Gabriele$$b6
000910206 7001_ $$0P:(DE-Juel1)131777$$aLangen, Karl-Josef$$b7
000910206 7001_ $$0P:(DE-HGF)0$$aKabbasch, Christoph$$b8
000910206 7001_ $$0P:(DE-HGF)0$$aGoldbrunner, Roland$$b9
000910206 7001_ $$0P:(DE-Juel1)131720$$aFink, Gereon R$$b10
000910206 7001_ $$0P:(DE-Juel1)143792$$aGalldiks, Norbert$$b11$$eCorresponding author
000910206 773__ $$0PERI:(DE-600)2094060-9$$a10.1093/neuonc/noac229$$gp. noac229$$n5$$p984–994$$tNeuro-Oncology$$v25$$x1522-8517$$y2023
000910206 8564_ $$uhttps://juser.fz-juelich.de/record/910206/files/Invoice_E15736808.pdf
000910206 8564_ $$uhttps://juser.fz-juelich.de/record/910206/files/noac229_postprint.pdf$$yPublished on 2022-10-10. Available in OpenAccess from 2023-10-10.
000910206 8767_ $$8E15736808$$92022-11-11$$a1200187060$$d2022-12-14$$eColour charges$$jZahlung erfolgt
000910206 909CO $$ooai:juser.fz-juelich.de:910206$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000910206 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190394$$aForschungszentrum Jülich$$b0$$kFZJ
000910206 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145110$$aForschungszentrum Jülich$$b5$$kFZJ
000910206 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131627$$aForschungszentrum Jülich$$b6$$kFZJ
000910206 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131777$$aForschungszentrum Jülich$$b7$$kFZJ
000910206 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b10$$kFZJ
000910206 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143792$$aForschungszentrum Jülich$$b11$$kFZJ
000910206 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5253$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000910206 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x1
000910206 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5252$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x2
000910206 9141_ $$y2023
000910206 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000910206 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000910206 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-08
000910206 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-08
000910206 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-10-24$$wger
000910206 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEURO-ONCOLOGY : 2022$$d2023-10-24
000910206 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-24
000910206 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-24
000910206 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-10-24
000910206 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-24
000910206 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-24
000910206 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2023-10-24
000910206 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bNEURO-ONCOLOGY : 2022$$d2023-10-24
000910206 920__ $$lyes
000910206 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0
000910206 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x1
000910206 980__ $$ajournal
000910206 980__ $$aVDB
000910206 980__ $$aUNRESTRICTED
000910206 980__ $$aI:(DE-Juel1)INM-4-20090406
000910206 980__ $$aI:(DE-Juel1)INM-3-20090406
000910206 980__ $$aAPC
000910206 9801_ $$aAPC
000910206 9801_ $$aFullTexts