000910208 001__ 910208
000910208 005__ 20230801210804.0
000910208 0247_ $$2doi$$a10.2967/jnumed.122.263790
000910208 0247_ $$2ISSN$$a0022-3123
000910208 0247_ $$2ISSN$$a0097-9058
000910208 0247_ $$2ISSN$$a0161-5505
000910208 0247_ $$2ISSN$$a1535-5667
000910208 0247_ $$2ISSN$$a2159-662X
000910208 0247_ $$2Handle$$a2128/32775
000910208 0247_ $$2pmid$$a35422443
000910208 0247_ $$2WOS$$aWOS:000968142600011
000910208 037__ $$aFZJ-2022-03685
000910208 082__ $$a610
000910208 1001_ $$0P:(DE-HGF)0$$aRosen, Jurij$$b0
000910208 245__ $$aCost-effectiveness of 18 F-FET PET for early treatment response assessment in glioma patients following adjuvant temozolomide chemotherapy
000910208 260__ $$aNew York, NY$$bSoc.$$c2022
000910208 3367_ $$2DRIVER$$aarticle
000910208 3367_ $$2DataCite$$aOutput Types/Journal article
000910208 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1690871399_1409
000910208 3367_ $$2BibTeX$$aARTICLE
000910208 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000910208 3367_ $$00$$2EndNote$$aJournal Article
000910208 520__ $$aRationale: In light of increasing healthcare costs, higher medical expenses should be justified socio-economically. Therefore, we calculated the effectiveness and cost-effectiveness of positron emission tomography (PET) using the radiolabeled amino acid O-(2-[18F]-fluoroethyl)-L-tyrosine (18F-FET) compared to conventional magnetic resonance imaging (MRI) for early identification of responders to adjuvant temozolomide chemotherapy. A recently published study in isocitrate dehydrogenase-wildtype glioma patients suggested that 18F-FET PET parameter changes predicted a significantly longer survival already after two cycles while MRI changes were not significant. Methods: To determine the effectiveness and cost-effectiveness of serial 18F-FET PET imaging, we analyzed published clinical data and calculated the associated costs from the perspective of the German Statutory Health Insurance system. Based on a decision-tree model, the effectiveness of 18F-FET PET and MRI was calculated, i.e., the probability to correctly identify a responder as defined by an overall survival ≥15 months. To determine the cost-effectiveness, the incremental cost-effectiveness ratio (ICER) was calculated, i.e., the cost for each additionally identified responder by 18F-FET PET who would have remained undetected by MRI. The robustness of the results was tested by deterministic and probabilistic Monte Carlo sensitivity analyses. Results: Compared to MRI, 18F-FET PET increased the rate of correctly identified responders to chemotherapy by 26%; thus, four patients needed to be examined by 18F-FET PET to identify one additional responder. Considering the respective cost for serial 18F-FET PET and MRI, the ICER resulted in €4,396.83 for each additional correctly identified responder by 18F-FET PET. Sensitivity analyses confirmed the robustness of the results. Conclusion: In contrast to conventional MRI, the model suggests that 18F-FET PET is cost-effective in terms of ICER values. Considering the high cost of temozolomide, the integration of 18F-FET PET has the potential to avoid premature chemotherapy discontinuation at reasonable cost.
000910208 536__ $$0G:(DE-HGF)POF4-5253$$a5253 - Neuroimaging (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000910208 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000910208 7001_ $$0P:(DE-HGF)0$$aCeccon, Garry$$b1
000910208 7001_ $$0P:(DE-HGF)0$$aBauer, Elena Katharina$$b2
000910208 7001_ $$0P:(DE-HGF)0$$aWerner, Jan Michael$$b3
000910208 7001_ $$aTscherpel, Caroline$$b4
000910208 7001_ $$0P:(DE-Juel1)156211$$aDunkl, Veronika$$b5
000910208 7001_ $$0P:(DE-HGF)0$$aRapp, Marion$$b6
000910208 7001_ $$0P:(DE-Juel1)165921$$aSabel, Michael$$b7
000910208 7001_ $$0P:(DE-HGF)0$$aHerrlinger, Ulrich$$b8
000910208 7001_ $$0P:(DE-Juel1)132315$$aHeinzel, Alexander$$b9$$ufzj
000910208 7001_ $$0P:(DE-HGF)0$$aSchaefer, Niklas$$b10
000910208 7001_ $$0P:(DE-HGF)0$$aRuge, Maximilian$$b11
000910208 7001_ $$0P:(DE-HGF)0$$aGoldbrunner, Roland$$b12
000910208 7001_ $$0P:(DE-Juel1)131627$$aStoffels, Gabriele$$b13$$ufzj
000910208 7001_ $$0P:(DE-HGF)0$$aKabbasch, Christoph$$b14
000910208 7001_ $$0P:(DE-Juel1)131720$$aFink, Gereon Rudolf$$b15$$ufzj
000910208 7001_ $$0P:(DE-Juel1)131777$$aLangen, Karl-Josef$$b16$$ufzj
000910208 7001_ $$0P:(DE-Juel1)143792$$aGalldiks, Norbert$$b17$$eCorresponding author$$ufzj
000910208 773__ $$0PERI:(DE-600)2040222-3$$a10.2967/jnumed.122.263790$$gp. jnumed.122.263790 -$$n10$$p1677-1682$$tJournal of nuclear medicine$$v63$$x0022-3123$$y2022
000910208 8564_ $$uhttps://juser.fz-juelich.de/record/910208/files/Invoice%20_JNUMED_2022_263790.pdf
000910208 8564_ $$uhttps://juser.fz-juelich.de/record/910208/files/Rosen%20et%20al%20post%20print.pdf$$yOpenAccess
000910208 8767_ $$8JNUMED/2022/263790$$92022-03-29$$aBelegnr.1200178768$$d2022-03-31$$ePublication charges$$jZahlung erfolgt$$zFZJ-2022-01788; USD 450,-
000910208 909CO $$ooai:juser.fz-juelich.de:910208$$popenaire$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access
000910208 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132315$$aForschungszentrum Jülich$$b9$$kFZJ
000910208 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131627$$aForschungszentrum Jülich$$b13$$kFZJ
000910208 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b15$$kFZJ
000910208 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131777$$aForschungszentrum Jülich$$b16$$kFZJ
000910208 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143792$$aForschungszentrum Jülich$$b17$$kFZJ
000910208 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5253$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000910208 9141_ $$y2022
000910208 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000910208 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000910208 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-27
000910208 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000910208 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000910208 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000910208 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ NUCL MED : 2021$$d2022-11-19
000910208 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-19
000910208 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-19
000910208 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-19
000910208 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-19
000910208 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-19
000910208 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2022-11-19
000910208 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-19
000910208 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bJ NUCL MED : 2021$$d2022-11-19
000910208 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0
000910208 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x1
000910208 980__ $$ajournal
000910208 980__ $$aVDB
000910208 980__ $$aI:(DE-Juel1)INM-4-20090406
000910208 980__ $$aI:(DE-Juel1)INM-3-20090406
000910208 980__ $$aAPC
000910208 980__ $$aUNRESTRICTED
000910208 9801_ $$aAPC
000910208 9801_ $$aFullTexts