TY - JOUR
AU - Rosen, Jurij
AU - Ceccon, Garry
AU - Bauer, Elena Katharina
AU - Werner, Jan Michael
AU - Tscherpel, Caroline
AU - Dunkl, Veronika
AU - Rapp, Marion
AU - Sabel, Michael
AU - Herrlinger, Ulrich
AU - Heinzel, Alexander
AU - Schaefer, Niklas
AU - Ruge, Maximilian
AU - Goldbrunner, Roland
AU - Stoffels, Gabriele
AU - Kabbasch, Christoph
AU - Fink, Gereon Rudolf
AU - Langen, Karl-Josef
AU - Galldiks, Norbert
TI - Cost-effectiveness of 18 F-FET PET for early treatment response assessment in glioma patients following adjuvant temozolomide chemotherapy
JO - Journal of nuclear medicine
VL - 63
IS - 10
SN - 0022-3123
CY - New York, NY
PB - Soc.
M1 - FZJ-2022-03685
SP - 1677-1682
PY - 2022
AB - Rationale: In light of increasing healthcare costs, higher medical expenses should be justified socio-economically. Therefore, we calculated the effectiveness and cost-effectiveness of positron emission tomography (PET) using the radiolabeled amino acid O-(2-[18F]-fluoroethyl)-L-tyrosine (18F-FET) compared to conventional magnetic resonance imaging (MRI) for early identification of responders to adjuvant temozolomide chemotherapy. A recently published study in isocitrate dehydrogenase-wildtype glioma patients suggested that 18F-FET PET parameter changes predicted a significantly longer survival already after two cycles while MRI changes were not significant. Methods: To determine the effectiveness and cost-effectiveness of serial 18F-FET PET imaging, we analyzed published clinical data and calculated the associated costs from the perspective of the German Statutory Health Insurance system. Based on a decision-tree model, the effectiveness of 18F-FET PET and MRI was calculated, i.e., the probability to correctly identify a responder as defined by an overall survival ≥15 months. To determine the cost-effectiveness, the incremental cost-effectiveness ratio (ICER) was calculated, i.e., the cost for each additionally identified responder by 18F-FET PET who would have remained undetected by MRI. The robustness of the results was tested by deterministic and probabilistic Monte Carlo sensitivity analyses. Results: Compared to MRI, 18F-FET PET increased the rate of correctly identified responders to chemotherapy by 26%; thus, four patients needed to be examined by 18F-FET PET to identify one additional responder. Considering the respective cost for serial 18F-FET PET and MRI, the ICER resulted in €4,396.83 for each additional correctly identified responder by 18F-FET PET. Sensitivity analyses confirmed the robustness of the results. Conclusion: In contrast to conventional MRI, the model suggests that 18F-FET PET is cost-effective in terms of ICER values. Considering the high cost of temozolomide, the integration of 18F-FET PET has the potential to avoid premature chemotherapy discontinuation at reasonable cost.
LB - PUB:(DE-HGF)16
C6 - 35422443
UR - <Go to ISI:>//WOS:000968142600011
DO - DOI:10.2967/jnumed.122.263790
UR - https://juser.fz-juelich.de/record/910208
ER -