001     910208
005     20230801210804.0
024 7 _ |a 10.2967/jnumed.122.263790
|2 doi
024 7 _ |a 0022-3123
|2 ISSN
024 7 _ |a 0097-9058
|2 ISSN
024 7 _ |a 0161-5505
|2 ISSN
024 7 _ |a 1535-5667
|2 ISSN
024 7 _ |a 2159-662X
|2 ISSN
024 7 _ |a 2128/32775
|2 Handle
024 7 _ |a 35422443
|2 pmid
024 7 _ |a WOS:000968142600011
|2 WOS
037 _ _ |a FZJ-2022-03685
082 _ _ |a 610
100 1 _ |a Rosen, Jurij
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Cost-effectiveness of 18 F-FET PET for early treatment response assessment in glioma patients following adjuvant temozolomide chemotherapy
260 _ _ |a New York, NY
|c 2022
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1690871399_1409
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Rationale: In light of increasing healthcare costs, higher medical expenses should be justified socio-economically. Therefore, we calculated the effectiveness and cost-effectiveness of positron emission tomography (PET) using the radiolabeled amino acid O-(2-[18F]-fluoroethyl)-L-tyrosine (18F-FET) compared to conventional magnetic resonance imaging (MRI) for early identification of responders to adjuvant temozolomide chemotherapy. A recently published study in isocitrate dehydrogenase-wildtype glioma patients suggested that 18F-FET PET parameter changes predicted a significantly longer survival already after two cycles while MRI changes were not significant. Methods: To determine the effectiveness and cost-effectiveness of serial 18F-FET PET imaging, we analyzed published clinical data and calculated the associated costs from the perspective of the German Statutory Health Insurance system. Based on a decision-tree model, the effectiveness of 18F-FET PET and MRI was calculated, i.e., the probability to correctly identify a responder as defined by an overall survival ≥15 months. To determine the cost-effectiveness, the incremental cost-effectiveness ratio (ICER) was calculated, i.e., the cost for each additionally identified responder by 18F-FET PET who would have remained undetected by MRI. The robustness of the results was tested by deterministic and probabilistic Monte Carlo sensitivity analyses. Results: Compared to MRI, 18F-FET PET increased the rate of correctly identified responders to chemotherapy by 26%; thus, four patients needed to be examined by 18F-FET PET to identify one additional responder. Considering the respective cost for serial 18F-FET PET and MRI, the ICER resulted in €4,396.83 for each additional correctly identified responder by 18F-FET PET. Sensitivity analyses confirmed the robustness of the results. Conclusion: In contrast to conventional MRI, the model suggests that 18F-FET PET is cost-effective in terms of ICER values. Considering the high cost of temozolomide, the integration of 18F-FET PET has the potential to avoid premature chemotherapy discontinuation at reasonable cost.
536 _ _ |a 5253 - Neuroimaging (POF4-525)
|0 G:(DE-HGF)POF4-5253
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Ceccon, Garry
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Bauer, Elena Katharina
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Werner, Jan Michael
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Tscherpel, Caroline
|b 4
700 1 _ |a Dunkl, Veronika
|0 P:(DE-Juel1)156211
|b 5
700 1 _ |a Rapp, Marion
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Sabel, Michael
|0 P:(DE-Juel1)165921
|b 7
700 1 _ |a Herrlinger, Ulrich
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Heinzel, Alexander
|0 P:(DE-Juel1)132315
|b 9
|u fzj
700 1 _ |a Schaefer, Niklas
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Ruge, Maximilian
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Goldbrunner, Roland
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Stoffels, Gabriele
|0 P:(DE-Juel1)131627
|b 13
|u fzj
700 1 _ |a Kabbasch, Christoph
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Fink, Gereon Rudolf
|0 P:(DE-Juel1)131720
|b 15
|u fzj
700 1 _ |a Langen, Karl-Josef
|0 P:(DE-Juel1)131777
|b 16
|u fzj
700 1 _ |a Galldiks, Norbert
|0 P:(DE-Juel1)143792
|b 17
|e Corresponding author
|u fzj
773 _ _ |a 10.2967/jnumed.122.263790
|g p. jnumed.122.263790 -
|0 PERI:(DE-600)2040222-3
|n 10
|p 1677-1682
|t Journal of nuclear medicine
|v 63
|y 2022
|x 0022-3123
856 4 _ |u https://juser.fz-juelich.de/record/910208/files/Invoice%20_JNUMED_2022_263790.pdf
856 4 _ |u https://juser.fz-juelich.de/record/910208/files/Rosen%20et%20al%20post%20print.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:910208
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)132315
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)131627
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 15
|6 P:(DE-Juel1)131720
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 16
|6 P:(DE-Juel1)131777
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 17
|6 P:(DE-Juel1)143792
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5253
|x 0
914 1 _ |y 2022
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-27
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J NUCL MED : 2021
|d 2022-11-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2022-11-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-19
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b J NUCL MED : 2021
|d 2022-11-19
920 1 _ |0 I:(DE-Juel1)INM-4-20090406
|k INM-4
|l Physik der Medizinischen Bildgebung
|x 0
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-4-20090406
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21