Home > Publications database > Cost-effectiveness of 18 F-FET PET for early treatment response assessment in glioma patients following adjuvant temozolomide chemotherapy > print |
001 | 910208 | ||
005 | 20230801210804.0 | ||
024 | 7 | _ | |a 10.2967/jnumed.122.263790 |2 doi |
024 | 7 | _ | |a 0022-3123 |2 ISSN |
024 | 7 | _ | |a 0097-9058 |2 ISSN |
024 | 7 | _ | |a 0161-5505 |2 ISSN |
024 | 7 | _ | |a 1535-5667 |2 ISSN |
024 | 7 | _ | |a 2159-662X |2 ISSN |
024 | 7 | _ | |a 2128/32775 |2 Handle |
024 | 7 | _ | |a 35422443 |2 pmid |
024 | 7 | _ | |a WOS:000968142600011 |2 WOS |
037 | _ | _ | |a FZJ-2022-03685 |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Rosen, Jurij |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Cost-effectiveness of 18 F-FET PET for early treatment response assessment in glioma patients following adjuvant temozolomide chemotherapy |
260 | _ | _ | |a New York, NY |c 2022 |b Soc. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1690871399_1409 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Rationale: In light of increasing healthcare costs, higher medical expenses should be justified socio-economically. Therefore, we calculated the effectiveness and cost-effectiveness of positron emission tomography (PET) using the radiolabeled amino acid O-(2-[18F]-fluoroethyl)-L-tyrosine (18F-FET) compared to conventional magnetic resonance imaging (MRI) for early identification of responders to adjuvant temozolomide chemotherapy. A recently published study in isocitrate dehydrogenase-wildtype glioma patients suggested that 18F-FET PET parameter changes predicted a significantly longer survival already after two cycles while MRI changes were not significant. Methods: To determine the effectiveness and cost-effectiveness of serial 18F-FET PET imaging, we analyzed published clinical data and calculated the associated costs from the perspective of the German Statutory Health Insurance system. Based on a decision-tree model, the effectiveness of 18F-FET PET and MRI was calculated, i.e., the probability to correctly identify a responder as defined by an overall survival ≥15 months. To determine the cost-effectiveness, the incremental cost-effectiveness ratio (ICER) was calculated, i.e., the cost for each additionally identified responder by 18F-FET PET who would have remained undetected by MRI. The robustness of the results was tested by deterministic and probabilistic Monte Carlo sensitivity analyses. Results: Compared to MRI, 18F-FET PET increased the rate of correctly identified responders to chemotherapy by 26%; thus, four patients needed to be examined by 18F-FET PET to identify one additional responder. Considering the respective cost for serial 18F-FET PET and MRI, the ICER resulted in €4,396.83 for each additional correctly identified responder by 18F-FET PET. Sensitivity analyses confirmed the robustness of the results. Conclusion: In contrast to conventional MRI, the model suggests that 18F-FET PET is cost-effective in terms of ICER values. Considering the high cost of temozolomide, the integration of 18F-FET PET has the potential to avoid premature chemotherapy discontinuation at reasonable cost. |
536 | _ | _ | |a 5253 - Neuroimaging (POF4-525) |0 G:(DE-HGF)POF4-5253 |c POF4-525 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Ceccon, Garry |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Bauer, Elena Katharina |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Werner, Jan Michael |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Tscherpel, Caroline |b 4 |
700 | 1 | _ | |a Dunkl, Veronika |0 P:(DE-Juel1)156211 |b 5 |
700 | 1 | _ | |a Rapp, Marion |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Sabel, Michael |0 P:(DE-Juel1)165921 |b 7 |
700 | 1 | _ | |a Herrlinger, Ulrich |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Heinzel, Alexander |0 P:(DE-Juel1)132315 |b 9 |u fzj |
700 | 1 | _ | |a Schaefer, Niklas |0 P:(DE-HGF)0 |b 10 |
700 | 1 | _ | |a Ruge, Maximilian |0 P:(DE-HGF)0 |b 11 |
700 | 1 | _ | |a Goldbrunner, Roland |0 P:(DE-HGF)0 |b 12 |
700 | 1 | _ | |a Stoffels, Gabriele |0 P:(DE-Juel1)131627 |b 13 |u fzj |
700 | 1 | _ | |a Kabbasch, Christoph |0 P:(DE-HGF)0 |b 14 |
700 | 1 | _ | |a Fink, Gereon Rudolf |0 P:(DE-Juel1)131720 |b 15 |u fzj |
700 | 1 | _ | |a Langen, Karl-Josef |0 P:(DE-Juel1)131777 |b 16 |u fzj |
700 | 1 | _ | |a Galldiks, Norbert |0 P:(DE-Juel1)143792 |b 17 |e Corresponding author |u fzj |
773 | _ | _ | |a 10.2967/jnumed.122.263790 |g p. jnumed.122.263790 - |0 PERI:(DE-600)2040222-3 |n 10 |p 1677-1682 |t Journal of nuclear medicine |v 63 |y 2022 |x 0022-3123 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/910208/files/Invoice%20_JNUMED_2022_263790.pdf |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/910208/files/Rosen%20et%20al%20post%20print.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:910208 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)132315 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 13 |6 P:(DE-Juel1)131627 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 15 |6 P:(DE-Juel1)131720 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 16 |6 P:(DE-Juel1)131777 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 17 |6 P:(DE-Juel1)143792 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-525 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Decoding Brain Organization and Dysfunction |9 G:(DE-HGF)POF4-5253 |x 0 |
914 | 1 | _ | |y 2022 |
915 | p | c | |a APC keys set |0 PC:(DE-HGF)0000 |2 APC |
915 | p | c | |a Local Funding |0 PC:(DE-HGF)0001 |2 APC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2021-01-27 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-27 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-27 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J NUCL MED : 2021 |d 2022-11-19 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-19 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-19 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-19 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-19 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2022-11-19 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1110 |2 StatID |b Current Contents - Clinical Medicine |d 2022-11-19 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2022-11-19 |
915 | _ | _ | |a IF >= 10 |0 StatID:(DE-HGF)9910 |2 StatID |b J NUCL MED : 2021 |d 2022-11-19 |
920 | 1 | _ | |0 I:(DE-Juel1)INM-4-20090406 |k INM-4 |l Physik der Medizinischen Bildgebung |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)INM-3-20090406 |k INM-3 |l Kognitive Neurowissenschaften |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)INM-4-20090406 |
980 | _ | _ | |a I:(DE-Juel1)INM-3-20090406 |
980 | _ | _ | |a APC |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|