000910212 001__ 910212
000910212 005__ 20230123110659.0
000910212 0247_ $$2doi$$a10.1021/acs.jpcc.2c06303
000910212 0247_ $$2Handle$$a2128/32895
000910212 0247_ $$2WOS$$aWOS:000877343500001
000910212 037__ $$aFZJ-2022-03689
000910212 082__ $$a530
000910212 1001_ $$0P:(DE-Juel1)178908$$aMaiti, Sonam$$b0
000910212 245__ $$aMoisture Effect on the Threshold Switching of TOPO-Stabilized Sub-10 nm HfO 2 Nanocrystals in Nanoscale Devices
000910212 260__ $$aWashington, DC$$bSoc.$$c2022
000910212 3367_ $$2DRIVER$$aarticle
000910212 3367_ $$2DataCite$$aOutput Types/Journal article
000910212 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1669813534_7067
000910212 3367_ $$2BibTeX$$aARTICLE
000910212 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000910212 3367_ $$00$$2EndNote$$aJournal Article
000910212 520__ $$aThe enduring demand for ever-increasing storage capacities inspires the development of new few nanometer-sized, high-performance memory devices. In this work, tri-n-octylphosphine oxide (TOPO)-stabilized sub-10 nm monoclinic HfO2 nanocrystals (NC) with a rod-like and spherical shape are synthesized and used to build up microscale and nanoscale test devices. The electrical characterization of these devices studied by cyclic current–voltage measurements reveals a redox-like behavior in ambient atmosphere and volatile threshold switching in vacuum. By employing a thorough spectroscopic and surface analysis (FT-IR and NMR spectroscopy and XPS), the origin of this behavior was elucidated. While the redox behavior is enabled by residual moisture present during clean-up of the NC and thin film preparation, which leads to a partial desorption of TOPO from the NC surface, threshold switching is obtained for dry TOPO-stabilized HfO2 NC in microchannel as well as in nanoelectrode devices addressing only a few sub-10 nm TOPO-stabilized HfO2 NC. The results show that integration of sub-10 nm HfO2 NC in nanoscale devices is feasible to build up switching elements.
000910212 536__ $$0G:(DE-HGF)POF4-5233$$a5233 - Memristive Materials and Devices (POF4-523)$$cPOF4-523$$fPOF IV$$x0
000910212 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000910212 7001_ $$0P:(DE-HGF)0$$aOhlerth, Thorsten$$b1
000910212 7001_ $$0P:(DE-Juel1)179230$$aSchmidt, Niclas$$b2
000910212 7001_ $$0P:(DE-Juel1)169457$$aAussen, Stephan$$b3
000910212 7001_ $$0P:(DE-HGF)0$$aWaser, Rainer$$b4
000910212 7001_ $$0P:(DE-HGF)0$$aSimon, Ulrich$$b5
000910212 7001_ $$0P:(DE-Juel1)130751$$aKarthäuser, Silvia$$b6$$eCorresponding author
000910212 773__ $$0PERI:(DE-600)2256522-X$$a10.1021/acs.jpcc.2c06303$$gVol. 126, no. 43, p. 18571 - 18579$$n43$$p18571 - 18579$$tThe journal of physical chemistry <Washington, DC> / C$$v126$$x1932-7447$$y2022
000910212 8564_ $$uhttps://juser.fz-juelich.de/record/910212/files/Invoice_APC600357898.pdf
000910212 8564_ $$uhttps://juser.fz-juelich.de/record/910212/files/221007_TOPO_NC%20manuscript.pdf$$yPublished on 2022-10-23. Available in OpenAccess from 2023-10-23.
000910212 8564_ $$uhttps://juser.fz-juelich.de/record/910212/files/acs.jpcc.2c06303.pdf$$yRestricted
000910212 8767_ $$8APC600357898$$92022-10-17$$a1200185245$$d2022-10-19$$eCover$$jZahlung erfolgt$$zUSD 1650,-
000910212 909CO $$ooai:juser.fz-juelich.de:910212$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000910212 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179230$$aForschungszentrum Jülich$$b2$$kFZJ
000910212 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169457$$aForschungszentrum Jülich$$b3$$kFZJ
000910212 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b4$$kFZJ
000910212 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130751$$aForschungszentrum Jülich$$b6$$kFZJ
000910212 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5233$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000910212 9141_ $$y2022
000910212 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000910212 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000910212 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000910212 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-11
000910212 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-11
000910212 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-11
000910212 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-11
000910212 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-11
000910212 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS CHEM C : 2021$$d2022-11-11
000910212 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-11
000910212 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000910212 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000910212 9201_ $$0I:(DE-Juel1)PGI-10-20170113$$kPGI-10$$lJARA Institut Green IT$$x2
000910212 980__ $$ajournal
000910212 980__ $$aVDB
000910212 980__ $$aUNRESTRICTED
000910212 980__ $$aI:(DE-Juel1)PGI-7-20110106
000910212 980__ $$aI:(DE-82)080009_20140620
000910212 980__ $$aI:(DE-Juel1)PGI-10-20170113
000910212 980__ $$aAPC
000910212 9801_ $$aAPC
000910212 9801_ $$aFullTexts