Home > Publications database > Moisture Effect on the Threshold Switching of TOPO-Stabilized Sub-10 nm HfO 2 Nanocrystals in Nanoscale Devices > print |
001 | 910212 | ||
005 | 20230123110659.0 | ||
024 | 7 | _ | |a 10.1021/acs.jpcc.2c06303 |2 doi |
024 | 7 | _ | |a 2128/32895 |2 Handle |
024 | 7 | _ | |a WOS:000877343500001 |2 WOS |
037 | _ | _ | |a FZJ-2022-03689 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Maiti, Sonam |0 P:(DE-Juel1)178908 |b 0 |
245 | _ | _ | |a Moisture Effect on the Threshold Switching of TOPO-Stabilized Sub-10 nm HfO 2 Nanocrystals in Nanoscale Devices |
260 | _ | _ | |a Washington, DC |c 2022 |b Soc. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1669813534_7067 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The enduring demand for ever-increasing storage capacities inspires the development of new few nanometer-sized, high-performance memory devices. In this work, tri-n-octylphosphine oxide (TOPO)-stabilized sub-10 nm monoclinic HfO2 nanocrystals (NC) with a rod-like and spherical shape are synthesized and used to build up microscale and nanoscale test devices. The electrical characterization of these devices studied by cyclic current–voltage measurements reveals a redox-like behavior in ambient atmosphere and volatile threshold switching in vacuum. By employing a thorough spectroscopic and surface analysis (FT-IR and NMR spectroscopy and XPS), the origin of this behavior was elucidated. While the redox behavior is enabled by residual moisture present during clean-up of the NC and thin film preparation, which leads to a partial desorption of TOPO from the NC surface, threshold switching is obtained for dry TOPO-stabilized HfO2 NC in microchannel as well as in nanoelectrode devices addressing only a few sub-10 nm TOPO-stabilized HfO2 NC. The results show that integration of sub-10 nm HfO2 NC in nanoscale devices is feasible to build up switching elements. |
536 | _ | _ | |a 5233 - Memristive Materials and Devices (POF4-523) |0 G:(DE-HGF)POF4-5233 |c POF4-523 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Ohlerth, Thorsten |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Schmidt, Niclas |0 P:(DE-Juel1)179230 |b 2 |
700 | 1 | _ | |a Aussen, Stephan |0 P:(DE-Juel1)169457 |b 3 |
700 | 1 | _ | |a Waser, Rainer |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Simon, Ulrich |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Karthäuser, Silvia |0 P:(DE-Juel1)130751 |b 6 |e Corresponding author |
773 | _ | _ | |a 10.1021/acs.jpcc.2c06303 |g Vol. 126, no. 43, p. 18571 - 18579 |0 PERI:(DE-600)2256522-X |n 43 |p 18571 - 18579 |t The journal of physical chemistry |v 126 |y 2022 |x 1932-7447 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/910212/files/Invoice_APC600357898.pdf |
856 | 4 | _ | |y Published on 2022-10-23. Available in OpenAccess from 2023-10-23. |u https://juser.fz-juelich.de/record/910212/files/221007_TOPO_NC%20manuscript.pdf |
856 | 4 | _ | |y Restricted |u https://juser.fz-juelich.de/record/910212/files/acs.jpcc.2c06303.pdf |
909 | C | O | |o oai:juser.fz-juelich.de:910212 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)179230 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)169457 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)130751 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-523 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Neuromorphic Computing and Network Dynamics |9 G:(DE-HGF)POF4-5233 |x 0 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-02-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-02-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2022-11-11 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J PHYS CHEM C : 2021 |d 2022-11-11 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2022-11-11 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-7-20110106 |k PGI-7 |l Elektronische Materialien |x 0 |
920 | 1 | _ | |0 I:(DE-82)080009_20140620 |k JARA-FIT |l JARA-FIT |x 1 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-10-20170113 |k PGI-10 |l JARA Institut Green IT |x 2 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)PGI-7-20110106 |
980 | _ | _ | |a I:(DE-82)080009_20140620 |
980 | _ | _ | |a I:(DE-Juel1)PGI-10-20170113 |
980 | _ | _ | |a APC |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|