000910213 001__ 910213
000910213 005__ 20230224084237.0
000910213 0247_ $$2doi$$a10.1088/1361-651X/ac8172
000910213 0247_ $$2ISSN$$a0965-0393
000910213 0247_ $$2ISSN$$a1361-651X
000910213 0247_ $$2Handle$$a2128/33719
000910213 0247_ $$2WOS$$aWOS:000840970100001
000910213 037__ $$aFZJ-2022-03690
000910213 082__ $$a530
000910213 1001_ $$0P:(DE-Juel1)187252$$aRoy, Shyamal$$b0$$ufzj
000910213 245__ $$aSintering of alumina nanoparticles: comparison of interatomic potentials, molecular dynamics simulations, and data analysis
000910213 260__ $$aBristol$$bIOP Publ.$$c2022
000910213 3367_ $$2DRIVER$$aarticle
000910213 3367_ $$2DataCite$$aOutput Types/Journal article
000910213 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1674199962_31589
000910213 3367_ $$2BibTeX$$aARTICLE
000910213 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000910213 3367_ $$00$$2EndNote$$aJournal Article
000910213 520__ $$aSintering of alumina nanoparticles is of interest both from the view of fundamental research as well as for industrial applications. Atomistic simulations are tailor-made for understanding and predicting the time- and temperature-dependent sintering behaviour. However, the quality and predictability of such analysis is strongly dependent on the performance of the underlying interatomic potentials. In this work, we investigate and benchmark four empirical interatomic potentials and discuss the resulting properties and drawbacks based on experimental and density functional theory data from the literature. The potentials, which have different origins and formulations, are then used in molecular dynamics (MD) simulations to perform a systematic study of the sintering process. To analyse the results, we develop a number of tailored data analysis approaches that are able to characterise and quantify the sintering process. Subsequently, the disparities in the sintering behaviour predicted by the potentials are critically discussed. Finally, we conclude by providing explanations for the differences in performance of the potentials, together with recommendations for MD sintering simulations of alumina.
000910213 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000910213 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000910213 7001_ $$00000-0003-0795-5777$$aPrakash, A.$$b1
000910213 7001_ $$0P:(DE-Juel1)186075$$aSandfeld, S.$$b2$$eCorresponding author
000910213 773__ $$0PERI:(DE-600)2001737-6$$a10.1088/1361-651X/ac8172$$gVol. 30, no. 6, p. 065009 -$$n6$$p065009 -$$tModelling and simulation in materials science and engineering$$v30$$x0965-0393$$y2022
000910213 8564_ $$uhttps://juser.fz-juelich.de/record/910213/files/Roy_2022_Modelling_Simul._Mater._Sci._Eng._30_065009.pdf$$yOpenAccess
000910213 8767_ $$d2022-12-02$$eHybrid-OA$$jPublish and Read
000910213 909CO $$ooai:juser.fz-juelich.de:910213$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire
000910213 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187252$$aForschungszentrum Jülich$$b0$$kFZJ
000910213 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186075$$aForschungszentrum Jülich$$b2$$kFZJ
000910213 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000910213 9141_ $$y2022
000910213 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000910213 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000910213 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000910213 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000910213 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000910213 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000910213 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2022-11-12$$wger
000910213 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-12
000910213 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-12
000910213 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-12
000910213 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-12
000910213 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-12
000910213 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-12
000910213 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMODEL SIMUL MATER SC : 2021$$d2022-11-12
000910213 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-12
000910213 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-12
000910213 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-12
000910213 920__ $$lyes
000910213 9201_ $$0I:(DE-Juel1)IAS-9-20201008$$kIAS-9$$lMaterials Data Science and Informatics$$x0
000910213 980__ $$ajournal
000910213 980__ $$aVDB
000910213 980__ $$aUNRESTRICTED
000910213 980__ $$aI:(DE-Juel1)IAS-9-20201008
000910213 980__ $$aAPC
000910213 9801_ $$aAPC
000910213 9801_ $$aFullTexts