001     910213
005     20230224084237.0
024 7 _ |a 10.1088/1361-651X/ac8172
|2 doi
024 7 _ |a 0965-0393
|2 ISSN
024 7 _ |a 1361-651X
|2 ISSN
024 7 _ |a 2128/33719
|2 Handle
024 7 _ |a WOS:000840970100001
|2 WOS
037 _ _ |a FZJ-2022-03690
082 _ _ |a 530
100 1 _ |a Roy, Shyamal
|0 P:(DE-Juel1)187252
|b 0
|u fzj
245 _ _ |a Sintering of alumina nanoparticles: comparison of interatomic potentials, molecular dynamics simulations, and data analysis
260 _ _ |a Bristol
|c 2022
|b IOP Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1674199962_31589
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Sintering of alumina nanoparticles is of interest both from the view of fundamental research as well as for industrial applications. Atomistic simulations are tailor-made for understanding and predicting the time- and temperature-dependent sintering behaviour. However, the quality and predictability of such analysis is strongly dependent on the performance of the underlying interatomic potentials. In this work, we investigate and benchmark four empirical interatomic potentials and discuss the resulting properties and drawbacks based on experimental and density functional theory data from the literature. The potentials, which have different origins and formulations, are then used in molecular dynamics (MD) simulations to perform a systematic study of the sintering process. To analyse the results, we develop a number of tailored data analysis approaches that are able to characterise and quantify the sintering process. Subsequently, the disparities in the sintering behaviour predicted by the potentials are critically discussed. Finally, we conclude by providing explanations for the differences in performance of the potentials, together with recommendations for MD sintering simulations of alumina.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Prakash, A.
|0 0000-0003-0795-5777
|b 1
700 1 _ |a Sandfeld, S.
|0 P:(DE-Juel1)186075
|b 2
|e Corresponding author
773 _ _ |a 10.1088/1361-651X/ac8172
|g Vol. 30, no. 6, p. 065009 -
|0 PERI:(DE-600)2001737-6
|n 6
|p 065009 -
|t Modelling and simulation in materials science and engineering
|v 30
|y 2022
|x 0965-0393
856 4 _ |u https://juser.fz-juelich.de/record/910213/files/Roy_2022_Modelling_Simul._Mater._Sci._Eng._30_065009.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:910213
|p openaire
|p open_access
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)187252
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)186075
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2022
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 p c |a DFG OA Publikationskosten
|0 PC:(DE-HGF)0002
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2022-11-12
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-12
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MODEL SIMUL MATER SC : 2021
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-12
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-12
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-12
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-9-20201008
|k IAS-9
|l Materials Data Science and Informatics
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-9-20201008
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21