000910215 001__ 910215
000910215 005__ 20240712084512.0
000910215 0247_ $$2doi$$a10.1002/adom.202101947
000910215 0247_ $$2Handle$$a2128/32043
000910215 0247_ $$2WOS$$aWOS:000787730700001
000910215 037__ $$aFZJ-2022-03692
000910215 082__ $$a670
000910215 1001_ $$0P:(DE-Juel1)173662$$aDas, Basita$$b0
000910215 245__ $$aEffect of Doping, Photodoping, and Bandgap Variation on the Performance of Perovskite Solar Cells
000910215 260__ $$aWeinheim$$bWiley-VCH$$c2022
000910215 3367_ $$2DRIVER$$aarticle
000910215 3367_ $$2DataCite$$aOutput Types/Journal article
000910215 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1666071419_30574
000910215 3367_ $$2BibTeX$$aARTICLE
000910215 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000910215 3367_ $$00$$2EndNote$$aJournal Article
000910215 520__ $$aMost traditional semiconductor materials are based on the control of doping densities to create junctions and thereby functional and efficient electronic and optoelectronic devices. The technology development for halide perovskites had initially only rarely made use of the concept of electronic doping of the perovskite layer and instead employed a variety of different contact materials to create functionality. Only recently, intentional or unintentional doping of the perovskite layer is more frequently invoked as an important factor explaining differences in photovoltaic or optoelectronic performance in certain devices. Here, numerical simulations are used to study the influence of doping and photodoping on photoluminescence quantum yield and other device relevant metrics. It is found that doping can improve the photoluminescence quantum yield by making radiative recombination faster. This effect can benefit, or harm, photovoltaic performance given that the improvement of photoluminescence quantum efficiency and open-circuit voltage is accompanied by a reduction of the diffusion length. This reduction will eventually lead to inefficient carrier collection at high doping densities. The photovoltaic performance may improve at an optimum doping density which depends on a range of factors such as the mobilities of the different layers and the ratio of the charge carrier capture cross sections.
000910215 536__ $$0G:(DE-HGF)POF4-1215$$a1215 - Simulations, Theory, Optics, and Analytics (STOA) (POF4-121)$$cPOF4-121$$fPOF IV$$x0
000910215 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000910215 7001_ $$0P:(DE-Juel1)145750$$aAguilera, Irene$$b1$$ufzj
000910215 7001_ $$0P:(DE-Juel1)143905$$aRau, Uwe$$b2$$ufzj
000910215 7001_ $$0P:(DE-Juel1)159457$$aKirchartz, Thomas$$b3$$eCorresponding author
000910215 773__ $$0PERI:(DE-600)2708158-8$$a10.1002/adom.202101947$$gVol. 10, no. 13, p. 2101947 -$$n13$$p2101947$$tAdvanced optical materials$$v10$$x2195-1071$$y2022
000910215 8564_ $$uhttps://juser.fz-juelich.de/record/910215/files/Advanced%20Optical%20Materials%20-%202022%20-%20Das%20-%20Effect%20of%20Doping%20Photodoping%20and%20Bandgap%20Variation%20on%20the%20Performance%20of.pdf$$yOpenAccess
000910215 8767_ $$d2022-02-15$$eHybrid-OA$$jDEAL
000910215 909CO $$ooai:juser.fz-juelich.de:910215$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
000910215 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173662$$aForschungszentrum Jülich$$b0$$kFZJ
000910215 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145750$$aForschungszentrum Jülich$$b1$$kFZJ
000910215 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143905$$aForschungszentrum Jülich$$b2$$kFZJ
000910215 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159457$$aForschungszentrum Jülich$$b3$$kFZJ
000910215 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1215$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
000910215 9141_ $$y2022
000910215 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000910215 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000910215 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-02-02$$wger
000910215 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000910215 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000910215 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV OPT MATER : 2021$$d2022-11-10
000910215 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-10
000910215 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-10
000910215 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-10
000910215 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-10
000910215 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-10
000910215 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-10
000910215 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-10
000910215 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-10
000910215 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bADV OPT MATER : 2021$$d2022-11-10
000910215 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000910215 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000910215 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000910215 915pc $$0PC:(DE-HGF)0120$$2APC$$aDEAL: Wiley 2019
000910215 920__ $$lyes
000910215 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
000910215 9801_ $$aFullTexts
000910215 980__ $$ajournal
000910215 980__ $$aVDB
000910215 980__ $$aUNRESTRICTED
000910215 980__ $$aI:(DE-Juel1)IEK-5-20101013
000910215 980__ $$aAPC
000910215 981__ $$aI:(DE-Juel1)IMD-3-20101013