000910218 001__ 910218
000910218 005__ 20240712084500.0
000910218 0247_ $$2doi$$a10.1002/adma.202108132
000910218 0247_ $$2ISSN$$a0935-9648
000910218 0247_ $$2ISSN$$a1521-4095
000910218 0247_ $$2Handle$$a2128/32046
000910218 0247_ $$2pmid$$a35014106
000910218 0247_ $$2WOS$$aWOS:000773570300001
000910218 037__ $$aFZJ-2022-03695
000910218 082__ $$a660
000910218 1001_ $$0P:(DE-Juel1)187218$$aYuan, Ye$$b0$$ufzj
000910218 245__ $$aQuantifying Efficiency Limitations in All‐Inorganic Halide Perovskite Solar Cells
000910218 260__ $$aWeinheim$$bWiley-VCH$$c2022
000910218 3367_ $$2DRIVER$$aarticle
000910218 3367_ $$2DataCite$$aOutput Types/Journal article
000910218 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1666071819_30575
000910218 3367_ $$2BibTeX$$aARTICLE
000910218 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000910218 3367_ $$00$$2EndNote$$aJournal Article
000910218 520__ $$aWhile halide perovskites have excellent optoelectronic properties, their poor stability is a major obstacle toward commercialization. There is a strong interest to move away from organic A-site cations such as methylammonium and formamidinium toward Cs with the aim of improving thermal stability of the perovskite layers. While the optoelectronic properties and the device performance of Cs-based all-inorganic lead-halide perovskites are very good, they are still trailing behind those of perovskites that use organic cations. Here, the state-of-the-art of all-inorganic perovskites for photovoltaic applications is reviewed by performing detailed meta-analyses of key performance parameters on the cell and material level. Key material properties such as carrier mobilities, external photoluminescence quantum efficiency, and photoluminescence lifetime are discussed and what is known about defect tolerance in all-inorganic is compared relative to hybrid (organic–inorganic) perovskites. Subsequently, a unified approach is adopted for analyzing performance losses in perovskite solar cells based on breaking down the losses into several figures of merit representing recombination losses, resistive losses, and optical losses. Based on this detailed loss analysis, guidelines are eventually developed for future performance improvement of all-inorganic perovskite solar cells.
000910218 536__ $$0G:(DE-HGF)POF4-1213$$a1213 - Cell Design and Development (POF4-121)$$cPOF4-121$$fPOF IV$$x0
000910218 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000910218 7001_ $$0P:(DE-Juel1)187217$$aYan, Genghua$$b1$$ufzj
000910218 7001_ $$0P:(DE-HGF)0$$aHong, Ruijiang$$b2
000910218 7001_ $$0P:(DE-HGF)0$$aLiang, Zongcun$$b3
000910218 7001_ $$0P:(DE-Juel1)159457$$aKirchartz, Thomas$$b4$$eCorresponding author
000910218 773__ $$0PERI:(DE-600)1474949-X$$a10.1002/adma.202108132$$gVol. 34, no. 21, p. 2108132 -$$n21$$p210813$$tAdvanced materials$$v34$$x0935-9648$$y2022
000910218 8564_ $$uhttps://juser.fz-juelich.de/record/910218/files/Advanced%20Materials%20-%202022%20-%20Yuan%20-%20Quantifying%20Efficiency%20Limitations%20in%20All%E2%80%90Inorganic%20Halide%20Perovskite%20Solar%20Cells.pdf$$yOpenAccess
000910218 8767_ $$d2022-02-15$$eHybrid-OA$$jDEAL
000910218 909CO $$ooai:juser.fz-juelich.de:910218$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
000910218 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187218$$aForschungszentrum Jülich$$b0$$kFZJ
000910218 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187217$$aForschungszentrum Jülich$$b1$$kFZJ
000910218 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159457$$aForschungszentrum Jülich$$b4$$kFZJ
000910218 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1213$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
000910218 9141_ $$y2022
000910218 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000910218 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-02-04$$wger
000910218 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-04
000910218 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000910218 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-04
000910218 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-16$$wger
000910218 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-16
000910218 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-16
000910218 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-16
000910218 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-16
000910218 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-16
000910218 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV MATER : 2021$$d2022-11-16
000910218 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-16
000910218 915__ $$0StatID:(DE-HGF)9930$$2StatID$$aIF >= 30$$bADV MATER : 2021$$d2022-11-16
000910218 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000910218 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000910218 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000910218 915pc $$0PC:(DE-HGF)0120$$2APC$$aDEAL: Wiley 2019
000910218 920__ $$lyes
000910218 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
000910218 9801_ $$aFullTexts
000910218 980__ $$ajournal
000910218 980__ $$aVDB
000910218 980__ $$aUNRESTRICTED
000910218 980__ $$aI:(DE-Juel1)IEK-5-20101013
000910218 980__ $$aAPC
000910218 981__ $$aI:(DE-Juel1)IMD-3-20101013