000910219 001__ 910219
000910219 005__ 20240712084512.0
000910219 0247_ $$2doi$$a10.3390/nano12050780
000910219 0247_ $$2Handle$$a2128/32047
000910219 0247_ $$2pmid$$a35269269
000910219 0247_ $$2WOS$$aWOS:000768477000001
000910219 037__ $$aFZJ-2022-03696
000910219 082__ $$a540
000910219 1001_ $$00000-0002-5214-0668$$aDeo, Meenal$$b0
000910219 245__ $$aTantalum Oxide as an Efficient Alternative Electron Transporting Layer for Perovskite Solar Cells
000910219 260__ $$aBasel$$bMDPI$$c2022
000910219 3367_ $$2DRIVER$$aarticle
000910219 3367_ $$2DataCite$$aOutput Types/Journal article
000910219 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1666071914_30576
000910219 3367_ $$2BibTeX$$aARTICLE
000910219 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000910219 3367_ $$00$$2EndNote$$aJournal Article
000910219 520__ $$aElectron transporting layers facilitating electron extraction and suppressing hole recombination at the cathode are crucial components in any thin-film solar cell geometry, including that of metal–halide perovskite solar cells. Amorphous tantalum oxide (Ta2O5) deposited by spin coating was explored as an electron transport material for perovskite solar cells, achieving power conversion efficiency (PCE) up to ~14%. Ultraviolet photoelectron spectroscopy (UPS) measurements revealed that the extraction of photogenerated electrons is facilitated due to proper alignment of bandgap energies. Steady-state photoluminescence spectroscopy (PL) verified efficient charge transport from perovskite absorber film to thin Ta2O5 layer. Our findings suggest that tantalum oxide as an n-type semiconductor with a calculated carrier density of ~7 × 1018/cm3 in amorphous Ta2O5 films, is a potentially competitive candidate for an electron transport material in perovskite solar cells
000910219 536__ $$0G:(DE-HGF)POF4-1212$$a1212 - Materials and Interfaces (POF4-121)$$cPOF4-121$$fPOF IV$$x0
000910219 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000910219 7001_ $$0P:(DE-HGF)0$$aMöllmann, Alexander$$b1
000910219 7001_ $$0P:(DE-Juel1)169644$$aHaddad, Jinane$$b2$$ufzj
000910219 7001_ $$00000-0001-7242-8020$$aÜnlü, Feray$$b3
000910219 7001_ $$0P:(DE-Juel1)180881$$aKulkarni, Ashish$$b4$$ufzj
000910219 7001_ $$00000-0001-9875-0966$$aLiu, Maning$$b5
000910219 7001_ $$00000-0003-4948-6147$$aTachibana, Yasuhiro$$b6
000910219 7001_ $$0P:(DE-HGF)0$$aStadler, Daniel$$b7
000910219 7001_ $$00000-0002-8934-0567$$aBhardwaj, Aman$$b8
000910219 7001_ $$0P:(DE-HGF)0$$aLudwig, Tim$$b9
000910219 7001_ $$0P:(DE-Juel1)159457$$aKirchartz, Thomas$$b10$$ufzj
000910219 7001_ $$0P:(DE-HGF)0$$aMathur, Sanjay$$b11$$eCorresponding author
000910219 773__ $$0PERI:(DE-600)2662255-5$$a10.3390/nano12050780$$gVol. 12, no. 5, p. 780 -$$n5$$p780 -$$tNanomaterials$$v12$$x2079-4991$$y2022
000910219 8564_ $$uhttps://juser.fz-juelich.de/record/910219/files/nanomaterials-12-00780.pdf$$yOpenAccess
000910219 909CO $$ooai:juser.fz-juelich.de:910219$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000910219 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169644$$aForschungszentrum Jülich$$b2$$kFZJ
000910219 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180881$$aForschungszentrum Jülich$$b4$$kFZJ
000910219 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159457$$aForschungszentrum Jülich$$b10$$kFZJ
000910219 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1212$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
000910219 9141_ $$y2022
000910219 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000910219 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000910219 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000910219 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-05-04
000910219 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000910219 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-05-04
000910219 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANOMATERIALS-BASEL : 2021$$d2022-11-12
000910219 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-12
000910219 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-12
000910219 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-08-26T21:24:06Z
000910219 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-08-26T21:24:06Z
000910219 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2022-08-26T21:24:06Z
000910219 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-12
000910219 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-12
000910219 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-12
000910219 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-12
000910219 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-12
000910219 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNANOMATERIALS-BASEL : 2021$$d2022-11-12
000910219 920__ $$lyes
000910219 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
000910219 9801_ $$aFullTexts
000910219 980__ $$ajournal
000910219 980__ $$aVDB
000910219 980__ $$aUNRESTRICTED
000910219 980__ $$aI:(DE-Juel1)IEK-5-20101013
000910219 981__ $$aI:(DE-Juel1)IMD-3-20101013