TY  - JOUR
AU  - Deo, Meenal
AU  - Möllmann, Alexander
AU  - Haddad, Jinane
AU  - Ünlü, Feray
AU  - Kulkarni, Ashish
AU  - Liu, Maning
AU  - Tachibana, Yasuhiro
AU  - Stadler, Daniel
AU  - Bhardwaj, Aman
AU  - Ludwig, Tim
AU  - Kirchartz, Thomas
AU  - Mathur, Sanjay
TI  - Tantalum Oxide as an Efficient Alternative Electron Transporting Layer for Perovskite Solar Cells
JO  - Nanomaterials
VL  - 12
IS  - 5
SN  - 2079-4991
CY  - Basel
PB  - MDPI
M1  - FZJ-2022-03696
SP  - 780 -
PY  - 2022
AB  - Electron transporting layers facilitating electron extraction and suppressing hole recombination at the cathode are crucial components in any thin-film solar cell geometry, including that of metal–halide perovskite solar cells. Amorphous tantalum oxide (Ta2O5) deposited by spin coating was explored as an electron transport material for perovskite solar cells, achieving power conversion efficiency (PCE) up to ~14%. Ultraviolet photoelectron spectroscopy (UPS) measurements revealed that the extraction of photogenerated electrons is facilitated due to proper alignment of bandgap energies. Steady-state photoluminescence spectroscopy (PL) verified efficient charge transport from perovskite absorber film to thin Ta2O5 layer. Our findings suggest that tantalum oxide as an n-type semiconductor with a calculated carrier density of ~7 × 1018/cm3 in amorphous Ta2O5 films, is a potentially competitive candidate for an electron transport material in perovskite solar cells
LB  - PUB:(DE-HGF)16
C6  - 35269269
UR  - <Go to ISI:>//WOS:000768477000001
DO  - DOI:10.3390/nano12050780
UR  - https://juser.fz-juelich.de/record/910219
ER  -