Hauptseite > Publikationsdatenbank > Tantalum Oxide as an Efficient Alternative Electron Transporting Layer for Perovskite Solar Cells > print |
001 | 910219 | ||
005 | 20240712084512.0 | ||
024 | 7 | _ | |a 10.3390/nano12050780 |2 doi |
024 | 7 | _ | |a 2128/32047 |2 Handle |
024 | 7 | _ | |a 35269269 |2 pmid |
024 | 7 | _ | |a WOS:000768477000001 |2 WOS |
037 | _ | _ | |a FZJ-2022-03696 |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a Deo, Meenal |0 0000-0002-5214-0668 |b 0 |
245 | _ | _ | |a Tantalum Oxide as an Efficient Alternative Electron Transporting Layer for Perovskite Solar Cells |
260 | _ | _ | |a Basel |c 2022 |b MDPI |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1666071914_30576 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Electron transporting layers facilitating electron extraction and suppressing hole recombination at the cathode are crucial components in any thin-film solar cell geometry, including that of metal–halide perovskite solar cells. Amorphous tantalum oxide (Ta2O5) deposited by spin coating was explored as an electron transport material for perovskite solar cells, achieving power conversion efficiency (PCE) up to ~14%. Ultraviolet photoelectron spectroscopy (UPS) measurements revealed that the extraction of photogenerated electrons is facilitated due to proper alignment of bandgap energies. Steady-state photoluminescence spectroscopy (PL) verified efficient charge transport from perovskite absorber film to thin Ta2O5 layer. Our findings suggest that tantalum oxide as an n-type semiconductor with a calculated carrier density of ~7 × 1018/cm3 in amorphous Ta2O5 films, is a potentially competitive candidate for an electron transport material in perovskite solar cells |
536 | _ | _ | |a 1212 - Materials and Interfaces (POF4-121) |0 G:(DE-HGF)POF4-1212 |c POF4-121 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Möllmann, Alexander |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Haddad, Jinane |0 P:(DE-Juel1)169644 |b 2 |u fzj |
700 | 1 | _ | |a Ünlü, Feray |0 0000-0001-7242-8020 |b 3 |
700 | 1 | _ | |a Kulkarni, Ashish |0 P:(DE-Juel1)180881 |b 4 |u fzj |
700 | 1 | _ | |a Liu, Maning |0 0000-0001-9875-0966 |b 5 |
700 | 1 | _ | |a Tachibana, Yasuhiro |0 0000-0003-4948-6147 |b 6 |
700 | 1 | _ | |a Stadler, Daniel |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Bhardwaj, Aman |0 0000-0002-8934-0567 |b 8 |
700 | 1 | _ | |a Ludwig, Tim |0 P:(DE-HGF)0 |b 9 |
700 | 1 | _ | |a Kirchartz, Thomas |0 P:(DE-Juel1)159457 |b 10 |u fzj |
700 | 1 | _ | |a Mathur, Sanjay |0 P:(DE-HGF)0 |b 11 |e Corresponding author |
773 | _ | _ | |a 10.3390/nano12050780 |g Vol. 12, no. 5, p. 780 - |0 PERI:(DE-600)2662255-5 |n 5 |p 780 - |t Nanomaterials |v 12 |y 2022 |x 2079-4991 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/910219/files/nanomaterials-12-00780.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:910219 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)169644 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)180881 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 10 |6 P:(DE-Juel1)159457 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-121 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Photovoltaik und Windenergie |9 G:(DE-HGF)POF4-1212 |x 0 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-05-04 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-05-04 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2021-05-04 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2021-05-04 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NANOMATERIALS-BASEL : 2021 |d 2022-11-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2022-08-26T21:24:06Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2022-08-26T21:24:06Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Blind peer review |d 2022-08-26T21:24:06Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2022-11-12 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2022-11-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2022-11-12 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b NANOMATERIALS-BASEL : 2021 |d 2022-11-12 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-5-20101013 |k IEK-5 |l Photovoltaik |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-5-20101013 |
981 | _ | _ | |a I:(DE-Juel1)IMD-3-20101013 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|