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We analytically determine the distribution of fixed points in a canonical model of a chaotic neural
network. This distribution reveals that fixed points and dynamics are confined to separate shells in
phase space. Furthermore, the distribution enables us to determine the eigenvalue spectra of the
Jacobian at the fixed points. Perhaps counter-intuitively, the velocity of the dynamics is strongly
correlated with the direction imposed by the nearest fixed point despite the spatial separation. We
propose that this influence of the fixed points is mediated by tangentially fixed lines.

Introduction.– Chaotic dynamics are well understood
in low dimensional systems but are notoriously challeng-
ing in high dimensions [1]. In low dimensions, the first
step in the analysis of a dynamical system is to deter-
mine its fixed points in phase space, for example the two
instable fixed points at the centers of the Lorenz attrac-
tor [2]. For high-dimensional nonlinear systems, merely
finding all fixed points rapidly becomes prohibitive [3].

Neural networks are high-dimensional nonlinear sys-
tems which can exhibit chaotic dynamics [4, 5]. Fur-
thermore, they operate outside equilibrium due to the
asymmetric coupling [6, 7]. We here consider a canoni-
cal model of a chaotic neural network [4]: N nonlinearly
connected units xi(t) receiving a constant external input
ηi and obeying the dynamics

ẋi = −xi + N∑
j=1Jijφ(xj) + ηi (1)

with nonlinear transfer function φ(x) = tanh(x), in-
dependent and identically distributed (i.i.d.) coupling
weights Jij ∼ N(0, g2/N), and i.i.d. external inputs
ηi ∼ N(0,D). Due to the directional nature of synapses,
the coupling weights are asymmetric.

The analytical approach of dynamical mean-field the-
ory [4, 8] led to a deep understanding of the dynamics
of the recurrent network model (1) at large N . Both
without [4, 9] and with [10] external input, the statistics
of the activity is well captured by a zero-mean Gaussian
process with self-consistent autocorrelation function and
the system is chaotic above a critical value of g = gc (with-
out external input gc = 1). Dynamical mean-field theory
has also been successfully applied to various extensions
of the model [11–20]. Furthermore, cross-correlations [21]
and the full Lyapunov spectrum have been investigated
recently [22].

In contrast to the dynamics, the phase space and the
fixed point structure received considerably less atten-
tion. The pioneering work [23] showed that for g = 1 + ε,
0 < ε≪ 1 and in the absence of external input, the phase
space contains a number of fixed points that grows ex-
ponentially with the size of the system N . Their finding

that the maximum Lyapunov exponent and the rate con-
trolling the exponential increase of fixed points to lead-
ing order in ε coincide led the authors to hypothesize a
deep link between the abundance of fixed points and the
chaoticity of the dynamics. To investigate the relation
between the fixed points and the dynamics, a mandatory
first step is to establish the location of the fixed points.

Therefore, in this Letter, we first determine the spatial
distribution of the fixed points. On the technical level,
this requires to compute the expected zero-crossings of
a Gaussian process with location dependent, i.e., non-
homogeneous statistics. Afterwards, we compare the ge-
ometry of the fixed points with the geometry of the dy-
namics and show that both are confined to separate shells
in the phase space. Next, we leverage the distribution
of fixed points to investigate the stability of the local
dynamics at the fixed points. Finally, we propose a co-
herent framework that exposes the topological structure
connecting the two shells, thus explaining the influence
of the fixed points on the dynamics despite their spatial
separation.

Throughout the Letter, we assume that the network
is in the chaotic regime g > gc and that the number of
units N is sufficiently large to allow us focus on the lead-
ing order behavior, which we express by the abbreviated
notation a .= eNb to denote limN→∞ 1

N
lna = b.

Spatial distribution of fixed points.– From here on,
we use vector notation to write Eq. (1) as ẋ = y(x)
where the velocity is given by y(x) = −x + Jφ(x) + η.
Since the parameters J and η of the model are nor-
mally distributed, the velocity y(x) and the Jacobian
y′(x) = −1 + Jdiag[φ′(x)] are Gaussian processes; note
that both y(x) and y′(x) are non-homogeneous pro-
cesses. Due to the randomness of y(x), the location of
the fixed points y(x) = 0 is described by a distribution
ρ(x). This distribution counts how many fixed points are
on average within an infinitesimal volume in phase space.
We determine ρ(x) from the Kac-Rice formula [24–26]

ρ(x) = ⟨δ[y(x)] ∣dety′(x)∣⟩J,η . (2)
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The expected number of fixed points Nfp follows from the
normalization constant Nfp = ∫RN dxρ(x). The Jacobian
determinant ∣dety′(x)∣ in Eq. (2) ensures that every fixed
point contributes to the distribution with equal weight.
Eq. (2) is equivalent to a random matrix problem: Us-
ing Bayes’ law to condition on y(x) = 0, ρ(x) can be
rewritten into [27, A.1]

ρ(x) = pL(x) ⟨∣det [M(x) +XΣ(x)]∣⟩Xij∼N(0,N−1) (3)

where the first factor pL(x) = N(x ∣0, κ(x) + D) with
κ(x) = g2

N ∑Ni=1 φ(xi)2 is the probability of the velocity
to be zero and the second factor is the expected determi-
nant of a random matrix with mean M(x) and covariance
Σ(x)TΣ(x) controlling for the fluctuations of the veloc-
ity process. Here, κ(x) +D is the variance of the Gaus-
sian process y(x) and M(x), Σ(x)TΣ(x) are the mean
and variance, respectively, of the Gaussian process y′(x)
conditioned on y(x) = 0. Extending the technique intro-
duced in [28], the determinant can be calculated; assum-
ing self-averaging and excluding singularities, it is given
by ⟨∣det [M(x) +XΣ(x)]∣⟩ .= exp (Nζ(x)) with [27, A.2]

ζ(x) = −1
2
z∗ + 1

2N

N∑
i=1 ln[1 + z∗g2φ′(xi)2] (4)

where z∗ is the solution of

1 = 1

N

N∑
i=1

g2φ′(xi)2
1 + z∗ g2φ′(xi)2 . (5)

To summarize, the N -dimensional distribution of the
fixed points is ρ(x) .= exp ( −NS(x)) with

S(x) = q(x)
2[κ(x) +D] + ln{2π[κ(x) +D]} − ζ(x) (6)

where q(x) = 1
N ∑Ni=1 x2i and ζ(x) is determined by

Eq. (4) and Eq. (5).
The fixed point distribution (6) has the symmetry of

a hypercube. Furthermore, the distribution depends on
the location in phase space x only through the scalar
fields q(x), κ(x), and ζ(x). All three scalar fields are
collective variables which depend on x through network-
averages. This property enables us to express the fixed
point distribution as a functional ρ(x) = ρ[µx] of the
empirical measure

µx(y) = 1

N

N∑
i=1 δ(y − xi), (7)

i.e., the empirical distribution of vector components of
x. From the expected empirical measure at the fixed
points µ∗(y) = ⟨µx(y)⟩x∼ρ(x) all network-averaged expec-
tation values ⟨ 1

N ∑Ni=1 f(xi)⟩x∼ρ(x) = ∫ dy µ∗(y)f(y) can
be computed. The expected empirical measure is given,
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Figure 1. Quantitative characterization of fixed points. (a)
Distribution of vector components of fixed points (empirical
measure): theoretical result (solid line) based on Eq. (8) and
histogram (bars) averaged across 4 × 104 fixed points for a
single realization of the coupling weights. (b) Same as (a)
for a randomly chosen single fixed point. (c) Empirical mea-
sure for different values of g. (d) Scaled squared distance to
the origin of fixed points (theory: red solid line; theoretical
finite-size standard deviation: yellow shading; numerical re-
sults: orange error bars) and dynamics (theory: blue solid
line; numerical integration: turquoise error bars). (e) Num-
ber of fixed points (topological complexity; solid lines: theory
based on Eq. (6); crosses: numerical results, see [27, E]; gray
dashed line: theory for g → 1+, D = 0 by [23]). (f) Tran-
sition to positive topological complexity (black dotted line)
and transition to chaos (black solid line) based on [10]. In the
regime (∗) the phase space exhibits an exponential number of
fixed points but the dynamics are not chaotic. Parameters:
D = 0.1 for (a)–(d), g = 4 for (a) and (b), N = 100 for all
numerical results and the shading in (d).

for large N , by the saddle point that maximizes ρ[µx] in
function space and admits the form [27, B.1]

µ∗(y) ∝ √
1 + αφ′(y)2e− y22β +γφ(y)2 , (8)

for which the parameters α, β, and γ are determined
by 1 = g2⟨ (φ′(y)−2 + α)−1 ⟩

µ∗ , β = ⟨φ(y)2⟩
µ∗ + D, and

γ = g2

2β
(β−1⟨y2⟩

µ∗ − 1) where expectation values have to
be taken self-consistently with respect to the expected
empirical measure.

We compare the empirical measure Eq. (8) to the
distribution of vector components of numerically deter-
mined fixed points. For the numerical results, we fix
the realization of the random parameters and employ
a Levenberg-Marquart rootfinder starting from indepen-
dent normally distributed initial conditions until satura-
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tion, i.e., until almost no new fixed points are found (see
[27, E]). We see in Fig. 1(a) that the theory Eq. (8) is
in excellent agreement with the empirical measure av-
eraged over all fixed points found numerically (see [27,
Fig. 2(a)] for further examples). Moreover, as shown in
Fig. 1(b), even single fixed points closely resemble the
expected empirical measure.

To quantify the latter observation, we show in [27, B.2]
that the probability distribution functional of the empir-
ical measures takes the form P [µ] .= exp(−NH[µ]) with
an analytically determined rate functionalH[µ]. Put dif-
ferently, µ obeys a large deviation principle [29, 30] with
rate functional H[µ]; the minimum of the rate functional
is attained at the expected empirical measure µ∗. Since
P [µ] quantifies both the variability within a realization
of the parameters as well as across realizations [27, B.2],
akin to the law of total variance, deviations of µ from µ∗
are rare for large N even at the level of individual fixed
points. Mismatches between µx and µ∗ for a fixed point
x are thus finite size effects (see [27, Fig. 2(b)] for further
examples).
Geometry of fixed point distribution.– The expected

empirical measure µ∗ provides insight into the geometry
of the fixed point distribution in phase space. First, the
sharp peak of µ∗ in combination with its broad base im-
plies that the fixed points are posed in the vicinity of the
span of a subset of axes in phase space.

Next, we want to inspect the typical distance of fixed
points to the origin. The expected value of the scaled
squared distance ux = 1

N
xTx is given by

u∗ = ∫ dy y2µ∗(y). (9)

The distribution of the distance P (u) inherits the ex-
ponential form of P [µ] because u is determined by the
empirical measure; formally, this is a consequence of the
contraction principle [29]. Thus, P (u) .= e−NI(u) where
the rate function is

I(u) = inf
µ∶ ∫ y2µ(y)dy=uH[µ]. (10)

The rate function is again O(1); hence, in the limit
N ≫ 1, the fluctuations of the distance vanish and we
conclude that the fixed points are distributed on a thin
spherical shell with radius

√
Nu∗. In Fig. 1(d), we show

the average distance and fluctuations based on Eq. (10)
(see [27, C.1]) for N = 100.

To put the fixed point’s distance to the origin into con-
text with the dynamics, we leverage the result from dy-
namic mean-field theory that the network-averaged vari-
ance q[x(t)] = 1

N ∑Ni=1 xi(t)2 is self-averaging for station-
ary statistics with fluctuations vanishing in the large N
limit both across time and across network realizations
[8, 20]. Hence, also the trajectory is embedded in a thin
shell around the origin, which is of radius

√
Nq.
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Figure 2. Jacobian spectrum at fixed points. (a) Eigenvalues
(orange dots) of the Jacobian at five randomly chosen fixed
points. Every eigenvalue with positive real part (black dot-
ted line) corresponds to an unstable mode of the fixed point.
The support of the spectrum (black circle) is determined by
the spectral radius, Eq. (11). (b) Spectral radius; theory
(black line) and numerical results (pink errorbars). (c) Radial
tail distribution of eigenvalues; theory (black line) based on
Eq. (12) and histogram (orange bars) based on the eigenvalues
shown in (a). (d) Theory from (c) for varying g. Parameters:
N = 100, g = 3 in (a) and (c), D = 0.1.

In Fig. 1(d), we compare the radii of both shells. We
note that, for all g > gc, the fixed points shell is inside of
the trajectories shell. Furthermore, for N →∞, the over-
lap between the shells vanishes and thus the trajectory
is clearly separated from the fixed points in phase space.
Number of fixed points.– A core result of [23] is that

without noise, D = 0, the system has a transition from
a single stable fixed point to an exponential number of
unstable fixed points Nfp

.= ecN at gc = 1. The respective
rate c, called the topological complexity in [23], is derived
in [27, C.2] and shown in Fig. 1(e). We see that the
critical gain parameter gc grows with D > 0; the corre-
sponding transition line is shown in Fig. 1(f). For D ≪ 1,
the transition to an exponential number of fixed points
coincides with the transition to chaos. For larger noise
strengths D, however, a regime exists where the system
has an exponential number of fixed points yet the dy-
namics are not chaotic.
Stability of fixed points.– After studying the number

and location of fixed points in phase space, we now in-
vestigate the local dynamics in the vicinity of a fixed
point x∗. Linearizing the dynamics, ẋ = y′(x∗)(x −
x∗) + O[(x − x∗)2], shows that the eigenvalues (see
Fig. 2(a)) of the Jacobian at the fixed point y′(x∗) de-
termine the local stability: Each eigenvalue with posi-
tive (negative) real part corresponds to an unstable (sta-
ble) eigendirection of the fixed point. The Jacobian can
be written as y′(x) = −1 + Xdiag[gφ′(x)] where again
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Figure 3. Impact of fixed points. (a) Distance to the near-
est fixed point (upper panel) and Pearson correlation between
y(x) and its linear predictor y′(x∗)[x(t) −x∗] (lower panel,
brown line) while the trajectory x(t) goes from a fixed point
x∗ being the nearest one (scaled time = 0) until another one
is closer (scaled time = 1). Corresponding result using a ran-
domly chosen fixed point (lower panel, blue line). Shading
denotes standard deviation of the mean. (b) Projection of
the trajectory (green line), the fixed points (pink asterisks)
and the tangentially fixed lines (light pink lines) onto the
first two neurons with a subsequent rescaling at every time-
step / point such that the original norm is preserved in the
projection. Parameters: g = 5, D = 0, N = 100.
Xij ∼ N(0,N−1). The eigenvalue spectrum of such ran-
dom matrices can be computed with the method de-
veloped in [31] because diag[gφ′(x)] is invertible. For
large N , the eigenvalue distribution of y′(x) is centered
around −1 + 0i and confined within a circle of radius
R(x) = g√N−1φ′(x)Tφ′(x). At a fixed point, the con-
traction principle attests a large deviation principle for
the spectral radius, with the expected value given by

R∗ = g√∫ dy φ′(y)2µ∗(y). (11)

In Fig. 2, we see that this radius is always > 1 in the
chaotic phase, indicating that for large N all fixed points
are unstable.

Within the support, the distribution of eigenvalues is
isotropic around the center. We can hence express the
distribution by the fraction of eigenvalues further than r
from the center nx(r), i.e., the radial tail distribution.
It obeys, again, a large deviation principle dominated by
the solution n∗(r) of

1 = ∫ dy µ∗(y) g2φ′(y)2
r2 + n∗(r) g2φ′(y)2 . (12)

We present the solution in Fig. 2(c). Here, we observe
that, especially deep in the chaotic regime, the unstable
modes of fixed points are underrepresented as opposed to
a uniform spectrum.
Impact of fixed points.– In [23], it is conjectured that

the dynamics can be understood as meandering around
the different fixed points, first following their stable di-
rections and then being repelled along their unstable di-
rections. The separation of fixed points and dynamics

onto different shells in phase space seemingly contradicts
this hypothesis.

To investigate the relation between fixed points and
dynamics further, we compute the correlation of the ac-
tual velocity of the numerically integrated model with the
velocity predicted by the dynamics linearized around the
nearest fixed point. In Fig. 3(a), we observe that the ve-
locities are indeed strongly correlated, especially while
the trajectory moves towards the nearest fixed point.
How can such a strong correlation arise despite the spa-
tial separation of fixed points and dynamics? To un-
derstand this, we consider tangentially fixed points, i.e.,
points x where the velocity is purely radial y(x) ∝ x,
or, put differently,

0 = y(x) − xxT

∥x∥2y(x). (13)

These points also exist on the dynamics shell. Here, they
play the same role as usual fixed points since the dy-
namics’ radial component vanishes for N ≫ 1 due to the
self-averaging of the network-averaged variance q.

The true fixed points are also tangentially fixed with
vanishing radial velocity. Do the true fixed points corre-
spond to tangentially fixed points on the dynamics shell?
We start from a true fixed point and move outwards (in-
wards) into the unique direction where only the radial
velocity decreases (increases); all points along this path
thus have vanishing tangential velocity, so we term the
paths tangentially fixed lines, see Fig. 3(b). These lines
can be computed using a Levenberg-Marquart rootfinder
to solve Eq. (13) while imposing the distance to the origin∥x∥ = r. In Fig. 3(b), we observe that most of these lines
intercept with the dynamical shell. Hence, for most true
fixed points we find a tangentially fixed point on the dy-
namics shell which potentially mediates the effect of the
fixed point and likely explains the correlation observed
in Fig. 3(a).
Discussion.– In this Letter we characterize the phase

space structure of a chaotic neural network using the
distribution of fixed points. The finding that the fixed
points are in a region separate from the dynamical at-
tractor led to the question whether the fixed points even
impact the dynamics. Numerically, the strong correla-
tion between the velocity and its linear predictor based
on the nearest fixed point shows that there is an im-
pact. We propose that the influence of the fixed points
is mediated by tangentially fixed lines, i.e., lines in phase
space along which the velocity is purely radial. From a
dynamical perspective the lines have an effect similar to
fixed points: their unstable directions scatter incoming
trajectories which results in chaotic dynamics.

In high-dimensional linear dynamical systems, May’s
pioneering stability analysis [32] enabled considerable in-
sights into the dynamics of ecosystems [33]. In the non-
linear case, the number of fixed points can be determined
if the velocity is generated by a homogeneous Gaussian
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potential [34]; in this case, it is even possible to deter-
mine the number of minima of the potential [35–37] with
applications in deep learning [38, 39]. The non-potential
case has been addressed in [23] and [40]; in the former
work the analysis is restricted to g = 1+ε while the latter
work investigates a velocity field based on a homogeneous
Gaussian field (for which it is possible to extend the anal-
ysis to the fraction of stable directions of fixed points
[41]). A particular non-homogeneous case with dynam-
ics constrained to a sphere has been solved in [42]. For
a recent review on stationary points of random fields see
[43]. Here, we go beyond the previous results by finding
the complete distribution of fixed points, which includes
their number, of the non-homogeneous random neural
network (1) for arbitrary g > gc. To this end, we extend
methods from random matrix theory [28, 31] to compute
the determinant of non-hermitian random matrices with
a correlation structure including low-rank terms. Our nu-
merical results show that the self-averaging assumption
is justified for the model (1), i.e., quenched and annealed
results coincide [44].

The results presented here pave the way towards a de-
tailed mechanistic understanding of the velocity field un-
derlying this fundamental model of a high dimensional
chaotic network. There are several directions for fur-
ther research: First, it would be interesting to extend the
analysis to more structured networks, e.g., in terms of low
rank perturbations [18], levels of symmetry [28, 45, 46],
or population structure [13, 14, 20]. Second, we here
focused on the regions in phase space containing either
fixed points or ongoing dynamics. Going radially out-
wards from the unstable fixed point at the origin, is there
a transition in the characteristics of the velocity field be-
fore the fixed-point shell? In particular, where and how
do the tangentially fixed lines start? Third, the frustra-
tion created by the quenched rotation between the axes
system, singled out by the element-wise application of
the nonlinearity, and the eigensystem of the connectivity
creates the complexity of the phase space. What is the
geometric relation between the axes system and the dy-
namics on the chaotic attractor? Last, deep insights into
trained neural networks are possible with an analysis of
their phase space [47, 48]. Here, we analyzed the phase
space of a random reservoir which already allows univer-
sal computation if the readout is optimized [49]—more
generally, learning with chaotic networks is an exciting
direction of ongoing research [19, 50, 51] that might be
able to leverage the exponential number of fixed points
and the associated capability for sequence processing.

We are grateful to Günther Palm and Alexandre René
for discussions about chaotic dynamics. This work was
partly supported by the European Union Horizon 2020
Grant No. 945539 (Human Brain Project SGA3), funded
by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) - 368482240/GRK2416, the Hu-
man Frontier Science Program RGP0057/2016 grant, the

Helmholtz Association Initiative and Networking Fund
under project number SO-092 (Advanced Computing Ar-
chitectures, ACA), the German Federal Ministry for Edu-
cation and Research (BMBF Grant 01IS19077A), and the
Excellence Initiative of the German federal and state gov-
ernments (ERS PF-JARA-SDS005). Open access publi-
cation funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) – 491111487

∗ Corresponding author. jakob.stubenrauch@rwth-
aachen.de

[1] S. H. Strogatz, Nonlinear Dynamics and Chaos: With
Applications to Physics, Biology, Chemistry, and En-
gineering, 2nd ed. (Westview Press, Philadelphia, PA,
2014).

[2] E. N. Lorenz, Deterministic nonperiodic flow, Journal of
the Atmospheric Sciences 20, 130 (1963).

[3] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.
Flannery, Numerical Recipes: The Art of Scientific Com-
puting, 3rd ed. (Cambridge University Press, 2007).

[4] H. Sompolinsky, A. Crisanti, and H. J. Sommers, Chaos
in random neural networks, Phys. Rev. Lett. 61, 259
(1988).

[5] C. van Vreeswijk and H. Sompolinsky, Chaos in neuronal
networks with balanced excitatory and inhibitory activ-
ity, Science 274, 1724 (1996).

[6] M. I. Rabinovich, P. Varona, A. I. Selverston, and H. D.
Abarbanel, Dynamical principles in neuroscience, Rev.
Mod. Phys. 78, 1213 (2006).

[7] H. Sompolinsky, Statistical mechanics of neuronal net-
works, Phys. Today 41, 70 (1988).

[8] M. Helias and D. Dahmen, Statistical Field Theory
for Neural Networks (Springer International Publishing,
2020) p. 203.

[9] A. Crisanti and H. Sompolinsky, Path integral approach
to random neural networks, Phys. Rev. E 98, 062120
(2018).

[10] J. Schuecker, S. Goedeke, and M. Helias, Optimal se-
quence memory in driven random networks, Phys. Rev.
X 8, 041029 (2018).

[11] L. Molgedey, J. Schuchhardt, and H. Schuster, Suppress-
ing chaos in neural networks by noise, Phys. Rev. Lett.
69, 3717 (1992).

[12] M. Stern, H. Sompolinsky, and L. F. Abbott, Dynamics of
random neural networks with bistable units, Phys. Rev.
E 90, 062710 (2014).

[13] J. Kadmon and H. Sompolinsky, Transition to chaos
in random neuronal networks, Phys. Rev. X 5, 041030
(2015).

[14] J. Aljadeff, M. Stern, and T. Sharpee, Transition to chaos
in random networks with cell-type-specific connectivity,
Phys. Rev. Lett. 114, 088101 (2015).

[15] F. Mastrogiuseppe and S. Ostojic, Intrinsically-generated
fluctuating activity in excitatory-inhibitory networks,
PLOS Comput. Biol. 13, e1005498 (2017).

[16] A. van Meegen and B. Lindner, Self-consistent correla-
tions of randomly coupled rotators in the asynchronous
state, Phys. Rev. Lett. 121, 258302 (2018).

[17] I. D. Landau and H. Sompolinsky, Coherent chaos in a



6

recurrent neural network with structured connectivity,
PLOS Comput. Biol. 14, e1006309 (2018).

[18] F. Mastrogiuseppe and S. Ostojic, Linking connectivity,
dynamics, and computations in low-rank recurrent neural
networks, Neuron 99, 609 (2018).

[19] C. Keup, T. Kühn, D. Dahmen, and M. Helias, Transient
chaotic dimensionality expansion by recurrent networks,
Phys. Rev. X 11, 10.1103/physrevx.11.021064 (2021).

[20] A. van Meegen, T. Kühn, and M. Helias, Large-deviation
approach to random recurrent neuronal networks: Pa-
rameter inference and fluctuation-induced transitions,
Phys. Rev. Lett. 127, 158302 (2021).

[21] D. G. Clark, L. F. Abbott, and A. Litwin-Kumar, Di-
mension of activity in random neural networks (2022).

[22] R. Engelken, F. Wolf, and L. F. Abbott, Lyapunov
spectra of chaotic recurrent neural networks (2020),
arXiv:2006.02427.

[23] G. Wainrib and J. Touboul, Topological and dynamical
complexity of random neural networks, Phys. Rev. Lett.
110, 118101 (2013).

[24] M. Kac, On the average number of real roots of a random
algebraic equation, Bulletin of the American Mathemat-
ical Society 49, 314 (1943).

[25] S. O. Rice, Mathematical analysis of random noise, Bell
Syst. Tech. J. 24, 46 (1945), reprinted in [52].

[26] J.-M. Azaïs and M. Wschebor, Level Sets and Extrema
of Random Processes and Fields (John Wiley & Sons,
2009).

[27] See supplemental material at XYZ for detailed deriva-
tions and further information, which includes Refs. [53–
56].

[28] H. Sommers, A. Crisanti, H. Sompolinsky, and Y. Stein,
Spectrum of large random asymmetric matrices, Phys.
Rev. Lett. 60, 1895 (1988).

[29] H. Touchette, The large deviation approach to statistical
mechanics, Phys. Rep. 478, 1 (2009).

[30] A. Dembo and O. Zeitouni, Large Deviations Techniques
and Applications (Springer Berlin Heidelberg, 2010).

[31] Y. Ahmadian, F. Fumarola, and K. D. Miller, Proper-
ties of networks with partially structured and partially
random connectivity, Phys. Rev. E 91, 012820 (2015).

[32] R. M. May, Will a large complex system be stable?, Na-
ture 238, 413 (1972).

[33] S. Allesina and S. Tang, The stability–complexity rela-
tionship at age 40: a random matrix perspective, Popul.
Ecol. 57, 63 (2015).

[34] Y. V. Fyodorov, Complexity of random energy land-
scapes, glass transition, and absolute value of the spec-
tral determinant of random matrices, Phys. Rev. Lett.
92, 240601 (2004).

[35] A. J. Bray and D. S. Dean, Statistics of critical points of
gaussian fields on large-dimensional spaces, Phys. Rev.
Lett. 98, 150201 (2007).

[36] Y. V. Fyodorov and I. Williams, Replica symmetry break-
ing condition exposed by random matrix calculation of
landscape complexity, J. Stat. Phys. 129, 1081 (2007).

[37] Y. V. Fyodorov and C. Nadal, Critical behavior of the
number of minima of a random landscape at the glass
transition point and the tracy-widom distribution, Phys.
Rev. Lett. 109, 167203 (2012).

[38] Y. N. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Gan-
guli, and Y. Bengio, Identifying and attacking the saddle
point problem in high-dimensional non-convex optimiza-
tion, in Adv. Neural Inf. Process. Syst., Vol. 27, edited

by Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence,
and K. Weinberger (Curran Associates, Inc., 2014).

[39] A. Choromanska, M. Henaff, M. Mathieu, G. Ben Arous,
and Y. LeCun, The Loss Surfaces of Multilayer Networks,
in Proceedings of the Eighteenth International Confer-
ence on Artificial Intelligence and Statistics, Proceed-
ings of Machine Learning Research, Vol. 38, edited by
G. Lebanon and S. V. N. Vishwanathan (PMLR, San
Diego, California, USA, 2015) pp. 192–204.

[40] Y. V. Fyodorov and B. A. Khoruzhenko, Nonlinear ana-
logue of the may-wigner instability transition, Proc. Natl.
Acad. Sci. USA 113, 6827 (2016).

[41] G. Ben Arous, Y. V. Fyodorov, and B. A. Khoruzhenko,
Counting equilibria of large complex systems by instabil-
ity index, Proc. Natl. Acad. Sci. USA 118, e2023719118
(2021).

[42] Y. V. Fyodorov, Topology trivialization transition in ran-
dom non-gradient autonomous ODEs on a sphere, Jour-
nal of Statistical Mechanics: Theory and Experiment
2016, 124003 (2016).

[43] V. Ros and Y. V. Fyodorov, The high-d land-
scapes paradigm: spin-glasses, and beyond (2022),
arXiv:2209.07975.

[44] M. Mézard, G. Parisi, and M. Virasoro, Spin Glass
Theory and Beyond (World Scientific Lecture Notes in
Physics, Vol 9) (World Scientific Publishing Company,
1987).

[45] D. Martí, N. Brunel, and S. Ostojic, Correlations be-
tween synapses in pairs of neurons slow down dynamics
in randomly connected neural networks, Phys. Rev. E 97,
062314 (2018).

[46] K. Berlemont and G. Mongillo, Glassy phase in
dynamically-balanced neuronal networks, BioRxiv ,
484348 (2022).

[47] D. Sussillo and O. Barak, Opening the black box: Low-
dimensional dynamics in high-dimensional recurrent neu-
ral networks, Neural Comput. 25, 626 (2013).

[48] S. Vyas, M. D. Golub, D. Sussillo, and K. V. Shenoy,
Computation Through Neural Population Dynamics,
Annu. Rev. Neurosci. 43, 249 (2020).

[49] W. Maass, T. Natschläger, and H. Markram, Real-time
computing without stable states: a new framework for
neural computation based on perturbations, Neural Com-
put. 14, 2531 (2002).

[50] B. Poole, S. Lahiri, M. Raghu, J. Sohl-Dickstein, and
S. Ganguli, Exponential expressivity in deep neural net-
works through transient chaos, in Advances in Neural In-
formation Processing Systems 29 (2016).

[51] M. Farrell, S. Recanatesi, T. Moore, G. Lajoie, and
E. Shea-Brown, Gradient-based learning drives robust
representations in recurrent neural networks by balancing
compression and expansion, Nature Machine Intelligence
4, 564 (2022).

[52] N. Wax, ed., Selected Papers on Noise and Stochastic
Processes (Dover Publications, New York, 1954).

[53] R. L. Stratonovich, Topics in the Theory of Random
Noise (Gordon and Breach, New York, 1967).

[54] C. Rasmussen and C. Williams, Gaussian Processes for
Machine Learning, Adaptive Computation and Machine
Learning (MIT Press, Cambridge, MA, USA, 2006) p.
248.

[55] T. Tao, V. Vu, and M. Krishnapur, Random matrices:
Universality of esds and the circular law, Ann. Probab.
38, 2023 (2010).



7

[56] R. S. Ellis, An overview of the theory of large
deviations and applications to statistical me-

chanics, Scand. Actuar. J. 1995, 97 (1995),
https://doi.org/10.1080/03461238.1995.10413952.



Phase Space Analysis of Chaotic Neural Networks
(Supplemental Material)

Jakob Stubenrauch,1, 2 Christian Keup,1, 2 Anno C. Kurth,1, 2 Moritz Helias,1, 2 and Alexander van Meegen1, 3

1Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and
JARA-Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany

2Department of Physics, Faculty 1, RWTH Aachen University, Aachen, Germany
3Institute of Zoology, University of Cologne, 50674 Cologne, Germany

(Dated: October 17, 2022)

CONTENTS

A. Distribution of fixed points 1
1. Kac-Rice formula 1
2. Determinant of a non-hermitian random matrix 4

B. Empirical measure 9
1. Expected empirical measure 10
2. Fluctuations of the empirical measure 12

C. Further observables 15
1. Distance distribution, separation of shells 15
2. Topological complexity 16
3. Jacobian spectrum at fixed points 17

D. Correlation despite separation 18
1. Impact of fixed points 18
2. Tangentially fixed points and lines 18

E. Numerical fixed point finding 19
1. Saturation 19

References 20

A. Distribution of fixed points

1. Kac-Rice formula

Counting roots To find the distribution of fixed points we first need to establish how to count roots of a field y(x).
The number of roots in a volume V is given by the Kac-Rice formula [1–3]

Nfp(V ) = ∫
V
dx δ [y(x)] ∣dety′(x)∣ (1)

where [y′(x)]ij = ∂xjyi(x) is the Jacobian of the field y(x). The Dirac delta δ [y(x)] hits at every root of y(x)
and the Jacobian determinant assures that every root contributes 1 to the total number of roots in N0. The latter is
necessary due to the scaling property of the Dirac delta

∫
V
dx δ [y(x)] h(x) = ∑

x∗∈V s.t.y(x∗)=0

h(x∗)∣dety′(x∗)∣ . (2)

Fixed point distribution Since the counting formula Eq. (1) holds for every Borel set V ⊂ RN [3], the integrand in
Eq. (1) can be interpreted as a distribution of roots. On average over realizations J and η, this distribution is

ρ(x) = ⟨δ [y(x)] ∣dety′(x)∣⟩J,η . (3)

Its norm Nfp ≡ ⟨Nfp(RN)⟩ = ∫RN dxρ(x) is the expected total number of fixed points.
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Joint distribution of velocity and Jacobian The expectation value in Eq. (3) can be simplified by transforming
from the realization parameters J and η to the velocity

y(x) ≡ ẋ = −x + Jφ(x) + η (4)

and Jacobian

y′(x) = −1 + Jdiag [φ′(x)] (5)

as random fields. Here, Jij
i.i.d.∼ N(0, g2/N) and ηi

i.i.d.∼ N(0,D) where we use the notation χi
i.i.d.∼ N(a, b) to denote

that the random variables χi are independently and identically distributed (i.i.d.) by the Gaussian distribution with
mean a and variance b. The joint probability distribution of y(x) and y′(x) follows by computing their first moments

⟨yi(x)⟩ = −xi ≡ µi(x), ⟨[y′(x)]ik⟩ = −δik ≡ [µi(x)]k, (6)

and second cumulants

⟨⟨yi(x) [y′(x)]jk⟩⟩ = g2

N
δijφ(xk)φ′(xk) ≡ δij[k(x)]k, ⟨⟨[y′(x)]ik [y′(x)]jl⟩⟩ = δijδkl g2

N
φ′(xk)2 ≡ δij[K(x)]kl. (7)

Since all higher cumulants vanish, the joint distribution of y and y′ is Gaussian. Furthermore, it factorizes into
velocity components yi and respective gradients (rows of the Jacobian) ∇yi = y′i. Hence, we can write the probability
distribution of y and y′ at each point x as px(y,y′) = ∏Ni=1 px(yi,y′i) with

(yi
y′i) i.i.d.∼ N [(µi(x)

µi(x)) ,([κ(x) +D] k(x)T

k(x) K(x) )] . (8)

A different formulation of the Kac-Rice formula [3, 4] gives the distribution of crossings of a Gaussian random process(y,y′) through y = 0 in terms of the joint probability as

ρ(x) = ∫ dy′ px(y = 0,y′) ∣dety′∣ . (9)

Since the formulation in terms of the Dirac delta, Eq. (3), is self-explaining and Eq. (9) is harder to motivate from
scratch, we show their equivalence by explicit substitution from J and η to y and y′. Solving Eqs. (4) and (5) for J
and η yields

[J
η
] (y,y′) = [ (1 + y′) diag [1/φ(x)′]

y +x − (1 + y′) diag [1/φ(x)′]φ(x)] . (10)

The Jacobian of the substitution is

D⎡⎢⎢⎢⎢⎣
y′
y

⎤⎥⎥⎥⎥⎦
[J
η
] = [Dy′J DyJ

Dy′η Dyη
] =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

diag [1/φ(x)′] ⋱ 0
diag [1/φ(x)′]

Dy′η 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(11)

where the columns of J are stacked to a vector to get the usual rule for substitution. Due to the upper right block
being zero, the lower left block does not contribute to the determinant. The integration in Eq. (3) can hence be
written

ρ(x) = ⟨δ [y(x)] ∣dety′(x)∣⟩J,η (12)

= ∫ dJdη pg(J)pD(η) δ [y(x)] ∣dety′(x)∣ (13)

= ∫ dy′ dy ∣ N∏
i=1

1

φ′(xi) ∣
N

pg [J(y′)] pD [η(y,y′)] δ [y(x)] ∣dety′∣ (14)

where pg(X) = ∏ijN(Jij ∣0, g2/N) and pD(x) = ∏iN(xi∣0,D) and N(a∣b, c) denotes the Gaussian distribution func-
tion with random variable a, mean value b and variance c.
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By plugging Eq. (10) into the first part of the integrand in Eq. (14), one can see that

∣ N∏
i=1

1

φ′(xi) ∣
N

pg [J(y′)] = ∏
i

N [y′i∣µi(x),K(x)] (15)

with µ, K as in Eqs. (6) and (7). Equation (15) is the marginal distribution of the Jacobian y′, since marginalizing
a Gaussian distribution does not alter diagonal cumulants. A similar procedure, and using the formula for the
conditional probability of a Gaussian [5, Appendix A2]

px(yi∣y′i) = N [yi∣µi + kTK−1 (y′i −µi) , κ +D − kTK−1k] , (16)

allows to identify

∫ dy pD [η(y,y′)] δ [y(x)] = px(yi = 0∣y′i) (17)

Putting all together, we get

ρ(x) = ∫ dy′px(y = 0∣y′)px(y′) ∣dety′∣ , (18)

which, using Bayes’ law

px(y,y′) = px(y′)px(y∣y′) = px(y)px(y′∣y), (19)

gives Eq. (9).
Condition on the level Using the rightmost dissection in Eq. (19), i.e. condition on the level y, is advantageous

since the level probability

pL(x) ≡ px(y = 0) = 1√
2π [κ(x) +D]N e

− xTx
2[κ(x)+D] , (20)

where κ(x) = (g2/N)φ(x)Tφ(x), can be taken out of the integral, i.e.

ρ(x) = pL(x) ⟨∣dety′∣⟩y′∼px(y′∣y=0) . (21)

The level probability denotes the marginal probability of the field y(x) to be zero at a point x. This alone is not the
fixed point distribution since the distribution of the Jacobian (think of it as the slope) controls how often the field
y(x) can cross the zero level when it is close to zero.
Jacobian distribution To compute the expected determinant in Eq. (21), we have to characterize the conditional

distribution px(y′∣y = 0) first. The conditional distribution of a Gaussian is again a Gaussian. Its moments are given
by [5, Appendix A2]

px(y′∣y = 0) =∏
i

N [y′i∣Mi(x),C(x)] (22)

where the mean conditioned Jacobian is

Mij(x) = −δij − g2

N

xiφ(xj)φ′(xj)
κ(x) +D (23)

and each row y′i has the same covariance matrix

Cnm = δnm g2

N
φ′(xn)2 − g4

N2

φ(xn)φ′(xn)φ(xm)φ′(xm)
κ(x) +D (24)

It will prove useful to write the conditioned Jacobian in the compact form

y′(y = 0) = M +XΣ (25)
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with Xij
i.i.d.∼ N(0,1/N) and ΣTΣ ≡ NC. To see this, lets verify that it has the correct moments (here we suppress

the dependency (y = 0)):
⟨y′ij⟩ =Mij

⟨y′ijy′kl⟩ − ⟨y′ij⟩ ⟨y′kl⟩ = ⟨ N∑
n,m=1

XinΣnjXkmΣml⟩
= N∑
n,m=1

1

N
δikδnmΣnjΣml

= δik 1

N
∑
n

ΣT
jnΣnl = δikCjl

(26)

Thus, as needed, the different rows are uncorrelated (δik) and within a row the correlation structure is given by C.
The scaled square root Σ of the covariance matrix

ΣTΣ =NC = Λ(1 − vvT)Λ,
Λ = g diag[φ′(x)],
vi = g√

N(κ +D)φ(xi)
(27)

can be computed by using

√
1 − vvT = 1 − vvT

1 +√
1 − vTv

, (28)

which can be checked for general vectors v. We find

Σ(x) =
⎡⎢⎢⎢⎢⎢⎣
1 − g2

N

φ(x)φ(x)T

κ(x) +D [1 +√
1 + κ(x)/D]

⎤⎥⎥⎥⎥⎥⎦
Λ(x) . (29)

Concluding, the fixed point distribution can be expressed as

ρ(x) = pL(x) ⟨∣det [M(x) +XΣ(x)]∣⟩
Xij

i.i.d.∼ N(0,1/N) . (30)

Note that both M(x) and Σ(x) consist of a sum of a diagonal and a rank one matrix.

2. Determinant of a non-hermitian random matrix

We want to compute the expectation of the modulus determinant in Eq. (30), i.e. of the matrix

y′(x) = M(x) +XΣ(x), Xij
i.i.d.∼ N(0,1/N). (31)

The determinant of a matrix is the product of its eigenvalues. For matrices of the form Eq. (31), but having complex
entries, it is known that the eigenvalue spectrum is self-averaging [6, Theorem 1.14].. I.e., assuming self-averaging
also in our case where the entries are real, we can use

ζ(x) = 1

N
ln ⟨∣dety′(x)∣⟩ = − 1

N
ln ⟨∣dety′(x)∣−1⟩ . (32)

Determinant as Gaussian integral To compute ζ, we build on the approach by [7]. First, we use detAT = detA
and det(AB) = detAdetB to rewrite Eq. (32) as

ζ = − 1

N
ln ⟨ 1√

det(y′Ty′ + ε1)⟩ (33)
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where we also added a diagonal matrix with (infinitesimal) strength ε to avoid divergences. We note that y′Ty′ is
positive semi-definite, and thus y′Ty′ + ε1 is positive definite, so we can use the Gaussian integral ∫ dz e− 1

2z
TAz =√ (2π)N

detA
to get

ζ = − 1

N
ln ⟨∫ dz e− 1

2z
T(y′Ty′+ε1)z⟩ + 1

2
ln(2π). (34)

The exponent in the expectation value in Eq. (34) is at most quadratic in the random variables Xij . Hence, it can be
computed as a Gaussian integral and we arrive at

ζ = − 1

N
ln∫ dz e

− 1
2 εz

Tz− zTMTMz

2(1+ 1
N
zTΣTΣz)−N2 ln(1+ 1

N z
TΣTΣz) + 1

2
ln(2π). (35)

Collective variables We evaluate the integral in saddle point approximation. To this end, we introduce the collective
variables

m = 1

N
zTMTMz, σ = 1

N
zTΣTΣz (36)

Denoting all collective variables as θ, we arrive at

ζ = − 1

N
ln∫ dθ e−N[ m

2(1+σ)+ 1
2 ln(1+σ)] ∫ dz e− 1

2 εz
Tzδ(θ − θ(z)) + 1

2
ln(2π).

We can interpret

p(θ) = ( ε

2π
)N/2 ∫ dz e− 1

2 εz
Tzδ(θ − θ(z))

as the density of the transformed random variable θ = θ(z) where xi
i.i.d.∼ N(0,1/ε). The corresponding characteristic

function is

Φ(θ̃) = ( ε

2π
)N/2 ∫ dz e− 1

2 εz
Tz+iθ̃Tθ(z) =

¿ÁÁÀ εN

det(ε1 − 2im̃ 1
N

MTM − 2iσ̃ 1
N

ΣTΣ)
such that we can write

p(θ) = N2

(2π)2 ∫ dθ̃ e−N[iθ̃Tθ−Ω(θ̃)]

with a scaled cumulant generating function Ω(θ̃) = 1
N

ln Φ(N θ̃) which is given by

Ω(θ̃) = − 1

2N
ln det(ε1 − 2im̃MTM − 2iσ̃ΣTΣ) + 1

2
ln ε.

Inserting p(θ), we arrive at

ζ = − 1

N
ln∫ dθ∫ dθ̃ e−NH(θ,θ̃) +O(N−1 lnN), (37)

H(θ, θ̃) = m

2(1 + σ) + 1

2
ln(1 + σ) + iθ̃Tθ + 1

2N
ln det(ε1 − 2im̃MTM − 2iσ̃ΣTΣ). (38)

Note that the terms containing ε or 2π cancel. Now, we would like to perform a saddle-point approximation to get
ζ =H(θ∗, θ̃∗) +O(N−1 lnN) where θ∗ and θ̃∗ minimize H(θ, θ̃).
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Saddle-point approximation The corresponding saddle-point equations are

− 2im̃ = 1

1 + σ , −2iσ̃ = − m(1 + σ)2
+ 1

1 + σ = 1 + σ −m(1 + σ)2
, (39)

−2im = 1

N
∂m̃ ln det(ε1 − 2im̃MTM − 2iσ̃ΣTΣ), −2iσ = 1

N
∂σ̃ ln det(ε1 − 2im̃MTM − 2iσ̃ΣTΣ).

To evaluate the derivatives, we use ∂x ln det(xX + yY ) = tr((xX + yY )−1X) to obtain

m = 1

N
tr[(ε1 − 2im̃MTM − 2iσ̃ΣTΣ)−1MTM], σ = 1

N
tr[(ε1 − 2im̃MTM − 2iσ̃ΣTΣ)−1ΣTΣ]. (40)

We can combine Eqs. (39) and (40) to

m = 1

N
tr[(ε1 + (1 + σ)−1MTM + (1 + σ −m)(1 + σ)−2ΣTΣ)−1

MTM], (41)

σ = 1

N
tr[(ε1 + (1 + σ)−1MTM + (1 + σ −m)(1 + σ)−2ΣTΣ)−1

ΣTΣ]. (42)

Putting it all together, we arrive at

ζ = −σ∗(1 + σ∗ −m∗)
2(1 + σ∗)2

+ 1

2N
ln det[ε(1 + σ∗)1 +MTM + (1 + σ∗ −m∗)(1 + σ∗)−1ΣTΣ] + O(N−1 lnN) (43)

where we used im̃∗m∗ = − m∗
2(1+σ∗) and iσ̃∗σ∗ = −σ∗(1+σ∗−m∗)

2(1+σ∗)2 due to Eq. (39).
Diagonal case We first consider the case where M = −1 and Σ = Λ ≡ g diag[φ′(x)], i.e., we neglect the rank 1

parts. As we will see later, this already yields the leading order contribution to the determinant.
The resulting saddle-point equations are

m = 1

N

N∑
i=1

1

ε + 1
1+σ + 1+σ−m(1+σ)2 λ2

i

, σ = 1

N

N∑
i=1

λ2
i

ε + 1
1+σ + 1+σ−m(1+σ)2 λ2

i

,

and the determinant is

ζ = −σ∗(1 + σ∗ −m∗)
2(1 + σ∗)2

+ 1

2N

N∑
i=1

ln[ε(1 + σ∗) + 1 + (1 + σ∗ −m∗)(1 + σ∗)−1λ2
i ] + O(N−1 lnN).

For ε→ 0, m,σ →∞ is a possible solution to the saddle-point equations.
Assuming the diverging solution is the relevant one, the determinant simplifies to

ζ = −1

2
(1 − m∗

σ∗ ) + 1

2N

N∑
i=1

ln [εσ∗ + 1 + (1 − m∗
σ∗ )λ2

i ] +O(N−1 lnN).
The saddle-point equations determine m

σ
and εσ via

m

σ
= 1

N

N∑
i=1

1

εσ + 1 + (1 − m
σ
)λ2
i

, 1 = 1

N

N∑
i=1

λ2
i

εσ + 1 + (1 − m
σ
)λ2
i

which can be combined to (εσ+1)m
σ
+(1− m

σ
) = 1. The latter equation leads to εσ = 0, thus the saddle-point equations

reduce further to

m

σ
= 1

N

N∑
i=1

1

1 + (1 − m
σ
)λ2
i

, 1 = 1

N

N∑
i=1

λ2
i

1 + (1 − m
σ
)λ2
i

.

These two equations are equivalent; for convenience we choose the second and introduce z = 1− m
σ
which is determined

by

1 = 1

N

N∑
i=1

λ2
i

1 + zλ2
i

. (44)

This equation needs to be solved numerically. In terms of the solution z∗, the determinant follows from

ζ = −1

2
z∗ + 1

2N

N∑
i=1

ln(1 + z∗λ2
i ) +O(N−1 lnN). (45)

The result can numerically be shown to be equivalent to results based on the spectral density from Ahmadian et al.
[8].
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Exact determinant Here, we compute the determinant for general matrices M, Σ to cover the case beyond the
diagonal approximation, including the rank 1 terms.

If we assume that m,σ →∞ is also in the general case the relevant solution, the determinant simplifies to

ζ = −1

2
(1 − m∗

σ∗ ) + 1

2N
ln det [εσ∗1 +MTM + (1 − m∗

σ∗ )ΣTΣ] +O(N−1 lnN).
The saddle-point equations for the relevant quantities are

m

σ
= 1

N
tr[(εσ1 +MTM + (1 − m

σ
)ΣTΣ)−1

MTM],
1 = 1

N
tr[(εσ1 +MTM + (1 − m

σ
)ΣTΣ)−1

ΣTΣ].
We can combine both equations to

m

σ
+ (1 − m

σ
) = 1

N
tr[(εσ1 +MTM + (1 − m

σ
)ΣTΣ)−1(MTM + (1 − m

σ
)ΣTΣ)]

which is fulfilled for εσ = 0. For εσ = 0, the remaining saddle-point equations are equivalent; hence, we opt again for
the second one and introduce z = 1 − m

σ
which obeys

1 = 1

N
tr[(MTM + zΣTΣ)−1

ΣTΣ]. (46)

In terms of the solution z∗, the determinant is given by

ζ = −1

2
z∗ + 1

2N
ln det(MTM + z∗ΣTΣ) +O(N−1 lnN). (47)

Leading order determinant Equations (46) and (47) are exact. However, they require computing the trace and the
determinant of a matrix. To capture the N ≫ 1 limit, we express the equations in terms of network sums ∑Ni=1 f(xi).
Here, we will also see that to leading order they correspond to the diagonal case above.

To this end, we first need an expression in terms of network sums of

ln det (MTM + z∗ΣTΣ) . (48)

We recall Eq. (23)

Mij(x) = −δij − g2

N

xiφ(xj)φ′(xj)
κ(x) +D (49)

= −(1 + 1

κ +DxkT) (50)

where [k(x)]k = g2

N
φ(xk)φ′(xk), and

Σ(x) =
⎡⎢⎢⎢⎢⎢⎣
1 − g2

N

φ(x)φ(x)T

κ(x) +D (1 +√
1 + κ(x)/D)

⎤⎥⎥⎥⎥⎥⎦
Λ(x)

Λ(x) = g diag[φ′(x)].
(51)

Hence, the squares are

MTM = 1 + 1

κ +D (kxT +xkT + xTx

κ +DkkT) , (52)

and

ΣTΣ = N [K − 1

κ +DkkT] (53)
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where [K(x)]kl = δkl g2N φ′(xk)2.
Thus, we need the determinant of a matrix of the form

A = D + axT +xaT + bbT (54)

where D = 1 + z∗NK is diagonal, a = 1
κ+Dk, b = √

xTx(κ+D)2 − Nz∗
κ+Dk = √

xTx − (κ +D)Nz∗a ≡ √
ϑ(x)a. Threefold

application of the matrix determinant lemma yields

detA = (1 + bT (D + axT +xaT)−1
b)× (55)

× (1 +xT (D +xaT)−1
a) (1 + aTD−1x)detD (56)

The inverse matrices can be computed with the Sherman Morrison formula

(A +uvT)−1 =A−1 − A−1uvTA−1

1 + vTA−1u
(57)

where A is an invertible square matrix and u and v are column vectors. Up to threefold application of the Sherman
Morrison formula and some simplifications lead to

ζ = −1

2
z∗ + 1

N

N∑
i=1

ln [1 + z∗g2φ′(xi)2] + 1

N
ln [(1 + β)2 + α(ϑ − γ)] (58)

where

α(x) = g4

[κ(x) +D]2
1

N2

N∑
i=1

φ(xi)2φ′(xi)2

1 + z∗g2φ′(xi)2
(59)

β(x) = g2

κ(x) +D 1

N

N∑
i=1

xiφ(xi)φ′(xi)
1 + z∗g2φ′(xi)2

(60)

γ(x) = N∑
i=1

x2
i

1 + z∗g2φ′(xi)2
(61)

Note that α = O(N−1), β = O(1), and γ,ϑ = O(N). Hence, to leading order, Eq. (58) equals the diagonal approxi-
mation Eq. (45). This correspondence, however, only holds if the same is true for the defining Equation of z∗, which
we show next.

The exact definition of z∗ is the solution of Eq. (46). Using the Sherman Morrison formula, we find

(MTM + zΣTΣ)−1 = B−1 − B−1aaTB−1

ϑ−1 + aTB−1a
(62)

where B = D + axT +xaT. Hence, the right hand side of Eq. (46) is

1

N
tr [(B−1 − B−1aaTB−1

ϑ−1 + aTB−1a
)ΣTΣ] (63)

= 1

N
tr [B−1N (K − 1

κ +DkkT)] − 1

N

1

ϑ−1 + aTB−1a
(ΣTΣB−Ta)T

B−1a (64)

where for the second line, we used the properties of the trace. Applying twice the Sherman-Morrison formula and
identifying the fields from above, the inverse of B is

B−1 = D−1 − D−1xaTD−1

1 + β − D−1 (axT − γ
1+βaaT − α

1+βxxT + αγ(1+β)2xaT)D−1

1 + β − γα
1+β . (65)

We have a lot of contributions. The only full rank part however is

1

N
tr (D−1NK) = 1

N

N∑
i=1

g2φ′(xi)2

1 + zg2φ′(xi)2
= O(1). (66)
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The other parts (rank 1 parts in the trace and scalar products to the right of Eq. (64)) yield scalar products that are
all O(N−1). To see this, we count each inner product that arises as a factor N , track the explicit appearances of N
and use the orders known for α, β, and γ. Hence, the equation defining z∗, Eq. (46), is to leading order equivalent to
Eq. (44).

Lastly, we have to check that aO(N−1) correction to Eq. (44) only yields aO(N−1) correction to z∗, and furthermore
to ζ in Eq. (45). To this end, assume that z0∗ solves the approximate Eq. (44). Adding a correction term of O(N−1)
to the approximate defining Eq. (44) leads to a shift z0∗ → z0∗ + δ, where δ is the solution of

1 = 1

N

N∑
i=1

λ2
i

1 + (z0∗ + δ)λ2
i

+O(N−1) (67)

⇔ 1

N

N∑
i=1

λ4
i(1 + z0∗λ2
i )2

δ = O(N−1) +O(δ2) (68)

where we Taylor expanded around δ = 0. Since the prefactor in front of δ is O(1), we find that δ = O(N−1) is
self-consistent. The change to ζ is then

ζ = −1

2
(z0∗ + δ) + 1

2N

N∑
i=1

ln [1 + (z0∗ + δ)λ2
i ] (69)

= −1

2
z0∗ + 1

2N

N∑
i=1

ln(1 + z∗λ2
i ) +O(δ). (70)

The leading order contribution to the scaled log determinant is hence indeed Eq. (45) with z∗ being the solution of
Eq. (44).

B. Empirical measure

So far we derived the distribution of fixed points ρ(x). In this Section we discuss the empirical measure

µx(y) = 1

N

N∑
i=1

δ(y − xi). (71)

It is a function of y that is parameterized by the position x. It contains all vector elements of x but forgets about
their order. We want to understand the distribution of empirical measures when x ∼ ρ(x). We will see that this
distribution (of distributions) is strongly peaked at the expected empirical measure

µ∗(y) = ⟨µx(y)⟩x∼ρ(x) . (72)

From the distribution of the empirical measure, the distribution of certain network-averaged quantities can be nicely
characterized. Particularly, the expectation of a network average is given by the expected empirical measure

⟨ 1

N

N∑
i=1

f(xi)⟩
x∼ρ(x)

= ∫ dy µ∗(y)f(y), (73)

which can be seen by plugging in the definition. Similarly, we can also express κ(x) as a functional of µx

κ(x) = g2

N
φ(x)Tφ(x) = g2 ∫ dy µx(y)φ(y)2 = κ[µx]. (74)

Furthermore, we can express the log determinant ζ(x) by µx

ζ(x) = −1

2
z∗(x) + 1

2N

N∑
i=1

ln(1 + z∗(x)g2φ′(xi)2) (75)

= −1

2
z∗[µx] + 1

2
∫ dy µx(y) ln(1 + z∗[µx]g2φ′(y)2) (76)

= ζ[µx] (77)
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where z∗[µx] is the solution of

1 = 1

N

N∑
i=1

g2φ′(xi)2

1 + z∗ g2φ′(xi)2
= ∫ dy µx(y) g2φ′(y)2

1 + z∗ g2φ′(y)2
. (78)

Summing up, the complete fixed point distribution can be expressed in terms of the empirical measure µx

ρ(x) = ρ[µx]. (79)

1. Expected empirical measure

In this Section, we compute the expected empirical measure µ∗(y) = ⟨µx(y)⟩x∼ρ(x). To this end, we follow the
method presented in [9] and [10]. We consider the characteristic functional

Z[j] = ⟨eijTµx⟩
x∼ρ(x) = ⟨ei 1

N ∑Ni=1 j(xi)⟩
x∼ρ(x) (80)

where j(y) is an auxiliary external source field and jTµx = ∫ dy j(y)µx(y) denotes a functional scalar product (this
notation will be implicit in the following). By ⟨○⟩x∼ρ(x) we mean average with respect to ρ(x)/ (∫ dz ρ(z)). We define
the scaled cumulant generating functional as WN [j] = 1

N
lnZ[Nj]. The expected empirical measure is the first Taylor

coefficient of WN

µ∗(y) = δ

δj(y)WN [j]∣
j(y)=0

. (81)

Plugging in the explicit result for the fixed point distribution, we have

WN [j] = 1

N
ln∫ dx

1

[2π (κ[µx] +D)]N/2 eS[j;x] − c, (82)

S[j;x] = − xTx

2 (κ[µx] +D) +Nζ[µx] + i∑i j(xi), (83)

c = 1

N
ln∫ dxρ(x) = 1

N
lnNfp, (84)

where the expected number of fixed points Nfp is the norm of the fixed point distribution ρ(x). The rate c is known
as the topological complexity [11].

We want to evaluate the integral in Eq. (82). To this end, we introduce an auxiliary field µ(y) that we use to
replace the x-dependent field µx(y). To ensure that this is still correct, we multiply the integrand by the functional
Dirac constraint δ[µ − µx] ≡ limM→∞∏Mi=1 δ [µ(yi) − µx(yi)] where {y1, ..., yM} M→∞→ R is a discretization of the real
line. Then, we have to integrate over µ(y) in a functional sense ∫ Dµ ≡ limM→∞ ∫ ∞−∞∏Mi=1 dµ(yi) for the replacement
to be correct at every point in the x integration. Lastly, we replace the functional Dirac constraint by its Fourier
integral representation

δ [µ − µx] = ∫ Dµ̃ e−iNµ̃T(µ−µx)
= ∫ Dµ̃ e−iNµ̃Tµ+i∑Ni=1 µ̃(xi),

(85)

where

∫ Dµ̃ ≡ N lim
M→∞∫

∞
−∞

M∏
i=1

dµ̃(yi)
2π

. (86)

With the auxiliary fields µ and µ̃, the x-integral in Eq. (82) formally factorizes

WN [j] = 1

N
ln∫ DµDµ̃ e−iNµ̃Tµ+N ln Ω[µ,µ̃,j] − c (87)

Ω[µ, µ̃, j] = ∫ dx√
2π (κ[µ] +D)e−

x2

2(κ[µ]+D)+ζ[µ]+ij(x)+iµ̃(x). (88)

Note that this factorization into identical integrals ∫ dx is only formal: The integrals are still coupled through their
common dependence on the fields µ and µ̃.
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Saddle point approximation The exponent of the integrand in Eq. (87) is proportional to N . We are interested
in large networks where N ≫ 1. In this regime we can perform a saddle point approximation which yields to leading
order in N−1

WN [j] = −iµ̃∗[j]Tµ∗[j] + ln Ω{µ∗[j], µ̃∗[j], j} − c (89)

where

µ∗[j](y) = δ ln Ω

δ iµ̃(y) ∣
µ∗[j],µ̃∗[j]

, iµ̃∗[j](y) = δ ln Ω

δ µ(y) ∣
µ∗[j],µ̃∗[j] (90)

are the maxima of the exponent of the integrand in Eq. (87). With this, we can compute the expectation value of µx
in saddle point approximation: Evaluating Eq. (81) gives

µ∗(y) = δ ln Ω{µ∗[0], µ̃∗[0], j}
δ j(y) ∣

j=0= µ∗[0](y)
(91)

where we used Eqs. (90) in the first step to eliminate the chain-rule derivatives and in the second step to identify the
result with µ∗[0]. Therefore, the derivative in Eq. (91) only acts on the explicit dependency of Ω on j.
Saddle point equations Next, to get the expected empirical measure, we discuss the solution of the saddle point

Equations (90) for j = 0.
The first saddle point Equation follows from straight forward differentiation

µ∗(y) = e− y2

2(κ[µ∗]+D)+ζ[µ∗]+iµ̃∗(y)√
2π (κ [µ∗] +D)Ω [µ∗, µ̃∗] . (92)

The second saddle point Equation

iµ̃∗(y) = 1

Ω
(∂Ω

∂κ

δκ[µ]
δµ(y) + ∂Ω

∂ζ

δζ[µ]
δµ(y))∣

µ∗,µ̃∗
(93)

involves some chain rule derivatives. We need the derivative of κ,

δκ[µ]
δµ(y) = g2φ(y)2, (94)

and we need the derivative of ζ[µ] as in Eq. (76). We find

δζ[µ]
δµ(y) = −1

2

δz∗[µ]
δµ(y) (1 − ∫ dxµ(x) g2φ′(x)2

1 + z∗[µ]g2φ′(x)2
) + 1

2
ln(1 + z∗[µ]g2φ′(y)2) (95)

where the first part vanishes due to the definition of z∗, see Eq. (78).
Concluding, the saddle point equation for µ̃ is

iµ̃∗(y) = g2φ(y)2

2(κ[µ∗] +D) ⎛⎝
⟨x2⟩

µ∗
κ[µ∗] +D − 1

⎞⎠ + 1

2
ln(1 + z∗[µ∗]g2φ′(y)2). (96)

The expected empirical measure is determined by the simultaneous solution of Eqs. (92) and (96). Combining them,
we find

µ∗(y) = Z−1
√

1 + αφ′(y)2e− y22β +γφ(y)2 (97)

where

α = z∗[µ∗]g2, β = κ[µ∗] +D, γ = g2

2β
(q[µ∗]

β
− 1) (98)
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Figure 1. Solution of the saddle point approximation. (a) Expected empirical measure Eq. (97) for D = 10−3. (b) Saddle point
fields Eq. (100) for D = 0. (c) Same as (a), but D = 0.5. (d) Topological complexity Eq. (125) for several values of g and D.
The transition to a positive complexity shifts for increasing noise strength.

and Z normalizes the empirical measure. Here, q[µ∗] ≡ ⟨y2⟩
y∼µ∗ . The parametrized form of the empirical measure in

Eq. (97) allows to formulate the saddle point approximation in terms of the scalars z∗, κ and q. The respective set
of Equations can be formulated in terms of standard Gauss integrals

q = √
2πβ(κ)Z−1 ⟨βx2

√
1 + α(z∗)φ′(√β(κ)x)2eγ(κ,q)φ(√β(κ)x)2⟩

x∼N(0,1) (99)

κ = g2
√

2πβ(κ)Z−1 ⟨φ(√β(κ)x)2
√

1 + α(z∗)φ′(√β(κ)x)2eγ(κ,q)φ(√β(κ)x)2⟩
x∼N(0,1) (100)

1 = g2
√

2πβ(κ)Z−1 ⟨ φ′(√β(κ)x)2√
1 + α(z∗)φ′(√β(κ)x)2

eγ(κ,q)φ(√β(κ)x)2⟩
x∼N(0,1)

(101)

where the norm Z in Eq. (97) can be written as

Z = ∫ dy
√

1 + αφ′(y)2e− y22β +γφ(y)2 (102)

= √
2πβ(κ) ⟨√1 + α(z∗)φ′(√β(κ)x)2eγ(κ,q)φ(√β(κ)x)2⟩

x∼N(0,1) . (103)

Equations (99), (100), and (101) can be solved efficiently by a damped iteration and using Gauss-Hermite quadrature
for the integrals due to the formulation in terms of standard Gaussians. They are equivalent to the compact equations
in the main text. The resulting saddle point fields and the expected empirical measure are shown in Fig. 1.

Furthermore, the expected empirical measure Eq. (97) is compared to numerical results (see Sec. E) in Fig. 2.

2. Fluctuations of the empirical measure

Here, we discuss some properties of the expected empirical measure.
Expected empirical measure versus marginal distribution In the context of self-averaging variables one often wants

to know if certain distributions can be swapped when computing the expected value of the respective variable. In this
spirit, we here show that the expected empirical measure is not only the expected distribution of vector components
at a fixed point, but also the expected marginal distribution of one vector component across all fixed points. To see
this, consider the definition of the expected empirical measure

µ∗(y) = 1

∫ dx′ρ(x′) ∫ dxρ(x)µx(y) = 1

∫ dx′ρ(x′)
1

N

N∑
i=1
∫ dxρ(x) δ(xi − y). (104)

Recall that due to the realization average, the fixed point distribution is symmetric under permutations of the neurons.
Hence, every part of the sum in Eq. (104) is equal, and we can write

µ∗(y) = 1

∫ dx′ρ(x′) ∫ dxρ(x) δ(x1 − y) (105)

where instead of x1 any other neuron could be chosen, as well. Carrying out the integration over x1, we find the usual
expression for marginal distributions

µ∗(y) = 1

∫ dx′ρ(x′) ∫ ( N∏
i=2

dxi)ρ(y, x2, ..., xN). (106)
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Figure 2. Empirical measure for different parameters. (a) Numerical verification of Eq. (97) by averaging across all fixed point
found at saturation for a fixed realization (see Sec. E). (b) Same as (a), but using single fixed points instead of averaging
across all. We note that despite the low resolution due to numerical limitations, even single fixed points resemble the expected
empirical measure. This is discussed in Sec. B 2.

Origin of the variability in ρ(x) So far we computed the expected empirical measure. In the next Section, we
estimate fluctuations of the empirical measure around the expected empirical measure. In order to interpret them
right, we here study the origin of these fluctuations. When considering the empirical measure of single fixed points in
a fixed realization, the fluctuations could be across fixed points within the realization. When considering the average
empirical measure over all fixed points in one realization, the fluctuations of this average could be across realizations.

We find that the fixed point density accounts for both, within- and across realization fluctuations. To see this we
derive the law of total variance. The variance of the empirical measure is

T (y) = δ2

δj(y)2
ln ⟨eijTµx⟩

x∼ρ(x)∣
j=0

= ⟨(µx(y) − ⟨µz(y)⟩ρ(z))2⟩
ρ(x) . (107)

Recall that the fixed point distribution is the realization average ρ(x) = ⟨ρJ,η(x)⟩J,η. In that spirit, we can dissect
the total variance T (by adding a zero term) into

T (y) = A(y) + ⟨WJ,η(y)⟩J,η (108)

where

A(y) = ⟨(⟨µx(y)⟩ρJ,η(x) − ⟨⟨µz(y)⟩ρJ′,η′(z)⟩J′,η′)
2⟩

J,η

(109)

is the across realizations variance of the expected empirical measure and

WJ,η(y) = ⟨(µx(y) − ⟨µz(y)⟩ρJ,η(z))2⟩
ρJ,η(x) (110)
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is the within realizations variance of the empirical measure. Equation (108) reflects the law of total variance.
We conclude that the variability we get from the fixed point distribution accounts for both – across- and within

realizations – variances. This means that the expected empirical measure is also the expected distribution of vector
components of every fixed point. We expect that for our case the within realizations part ⟨WJ,η⟩J,η strongly dominates
for both the empirical measure and the norm due to a self-averaging property in the sense that ⟨G(x)⟩ρJ,η(x) ≈⟨G(x)⟩ρ(x) ; proving this analytically would require to compute the joint density ⟨ρJ,η(x)ρJ,η(z)⟩J,η akin to the
computation of ⟨ρJ,η(x)⟩J,η in Sec. A 1 and show that it is very close to ρ(x)ρ(z).

Computing across-realization fluctuations numerically is resource-intensive because one has to find a representative
set of fixed points for several realizations to track the variability of the within-realization mean. Now even finding a
representative set for one realization is difficult for resource reasons, see Sec. E.

However, for the case of norms we can compare the rate function we compute in Sec. C 1 with the distribution of
numerical fixed point norms in one realization. Here we find that most of the variability seems to be already within
the realization, see Fig. 3, underlying our claim that the across-variances part A is subdominant.
Rate function for the empirical measure In Fig. 2 we observe that the expected empirical measure is in excellent

agreement with the empirical measure averaged across fixed point of a fixed realization. We further observe that
even single fixed point’s empirical measures resemble the expected empirical measure. To understand this, we here
investigate the likeliness of deviations of the empirical measure from the expected empirical measure. In deriving the
saddle point Equations (92) and (96) we showed the differentiability of the scaled cumulant generating functional Eq.
(89). Due to the existence and the differentiability of the scaled cumulant generating functional, the Gärtner-Ellis
theorem holds [10], [12, Sec. 5], stating that the empirical measure fulfills a large deviation principle: The family of
measures µ converges to the expected measure µ∗ as N → ∞ in the sense of distributions. One can also call this a
self-averaging property.

According to the Gärtner-Ellis theorem, the probability distribution functional of all empirical measures at fixed
points is of the form P [µ] .= exp(−NH[µ]), and the rate functional H[µ] is the Legendre transform of the scaled
cumulant generating functional. It quantifies the probability of deviations of µ from the minimum µ∗ of the rate
functional. These are rare for large N since they are exponentially suppressed in probability.

In this Section, we compute the rate functional. Since the scaled cumulant generating functional is differentiable,
the Legendre transform is

H[µ] = iµTjµ∗ −WN [jµ∗ ] (111)

where jµ∗ is determined by the stationarity condition

µ(y) = δ

δ ij(y)WN [j]∣
jµ∗
. (112)

Analogously to Eq. (91), we get

µ(y) = e−
y2

2(κ{µ∗[jµ∗ ]}+D)+ζ{µ∗[jµ∗ ]}+ijµ∗ (y)+iµ̃∗[jµ∗ ](y)
Ω∗√2π (κ [µ∗[jµ∗ ]] +D) (113)

where we introduced the short hand notation Ω∗ = Ω{µ∗[jµ∗ ], µ̃∗[jµ∗ ], jµ∗ }. Comparing with Eq. (91), we also see the
identity

µ(y) = µ∗[jµ∗ ](y) (114)

reflecting that µ is canonically conjugate to j. Formally solving Eq. (113) for the appearance of jµ∗ in the exponent,
and plugging into Eq. (111), yields

H[µ] =DKL(µ∥ν) −WN [jµ∗ ] (115)

where DKL(ρ1∥ρ2) = ⟨ln [ρ1(x)/ρ2(x)]⟩ρ1(x) is the Kullback-Leibler divergence between the probability distribution
functions ρ1 and ρ2. As a functional of ρ1 it is convex and has a single minimum at ρ1 = ρ2. The reference function
here is

ν(y) = e− y2

2(κ[µ]+D)+ζ[µ]+iµ̃∗[jµ∗ ](y)
Ω∗√2π (κ [µ] +D) . (116)
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A necessary condition for the expected measure µ∗ is that it minimizes the rate functional

δ

δµ
H[µ]∣

µ=µ∗ = ijµ∗∗
!= 0. (117)

Indeed, since j = 0 maximizes WN [j], namely WN [0] = 0, the expected empirical measure determined through the
self consistent requirement of the Kullback-Leibler divergence is

µ∗(y) = e−
y2

2(κ[µ∗]+D)+ζ[µ]+iµ̃∗[0](y)
Ω∗√2π (κ [µ∗] +D) , (118)

in line with the saddle point Equation (92).
Equation (115) expresses that points µ ≠ µ∗ are exponentially suppressed for two reasons: First, simply because

of the difference in terms of the Kullback-Leibler divergence. Second, because of a mismatch of the extremum of the
scaled cumulant generating functional.

C. Further observables

1. Distance distribution, separation of shells

Here, we ask about the distance dx = √
xTx of fixed points to the origin. The expected distance is

d∗ = √
N ∫ dy µ∗(y)y2. (119)

According to the contraction principle [10], the distance inherits the large deviation principle from the empirical
measure and thus, Eq. (119) is dominant for large N . Hence, the fixed points live on a thin shell of an N -dimensional
sphere of radius d∗. The thickness of the spherical shell decays exponentially with N .

We want to compute the finite size fluctuations of the distance. To this end, we compute the rate function of the
squared scaled distance u = d2/N = ∫ dy µ(y)y2. The contraction principle states that the rate function for u can be
derived from the rate functional for µ

I(u) = inf
µ∶vTµ=uH[µ] (120)

where v(y) = y2. The minimization is carried out using a Lagrange multiplier, hence we have to optimize

L[µ;λ] =H[µ] − λ (u − vTµ) (121)

for both, λ and µ. Recalling the Legendre transform for H[µ] = infj (iµTj −W [j]) in Eq. (111) and swapping the
optimizations, we have

δ

δµ(y) [iµTj − λ (u − vTµ)] != 0 (122)

which constraints the source term ij
!= λv. Since v(y) = y2 is a fixed function, infj → infλ. We have

I(u) = inf
λ

(λµT v −W [−iλv])∣
vTµ

!=u = inf
λ

(λu −WN [−iλv]) (123)

where we were able to explicitly plug in the condition vTµ = u. Thus, we have to solve

u = ∂

∂λ
WN [−iλv] = vTµ∗[−iλv] . (124)

In practice, we solve this by computing µ∗[−iλv] in the same way as we computed µ∗[0] in Sec. B 1 for a sequence
of values λ. Then, we check which u they correspond to using Eq. (124). Lastly, we plug into Eq. (123). In the main
text, we show the respective variances for D = 0.1 and several values of g. Here, in Fig. 3 we also show the whole
distribution for several parameters and compare it to the numerical results.
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Figure 3. Distance distribution. Using Eq. (123) and Eq. (124), we compute the distribution of the scaled squared distance for
several parameters (solid line) and compare it to the numerical findings (histograms) for fixed realizations of J and η.

Deviations from numerical results Here, we discuss the deviations of the distance distribution derived as above
from the numerical findings using brute force fixed point finding, which can be observed in Fig. 3.

For low values of g, only few fixed points can be found due to only N = 100 and c(g ≈ 1) ≈ 0 and Nfp
.= ecN . Hence,

the distance distribution relies on a low number of samples. In contrast, for the empirical measure, we have N times
more samples, since every vector component is a sample.

For high values of g, the system has many fixed points. So many that only a tiny subset of the complete number can
be found within reasonable time and we therefore have to stop the fixed point finding routine before saturation. Hence,
the resulting numerical distribution is strongly dependent on possible unknown biases of the Levenberg-Marquart fixed
point finder (possibly due to choice of initial values) to reach fixed points with certain properties more often than
others.

For intermediate values of g we should expect the best agreement, but also both effects from above might kick in.

2. Topological complexity

In this Section, we discuss the topological complexity. It was introduced by Wainrib and Touboul [11] to describe
the rate by which the expected number of fixed points grows with the number of neurons Nfp

.= ec(g,D)N . Wainrib and
Touboul proposed the topological complexity as a structural indicator of chaoticity, complementary to the maximum
Lyapunov exponent which they refer to as dynamical complexity.

By construction in Eq. (3), the expected number of fixed points is the norm of the fixed point distribution. We
therefore encountered the topological complexity in the scaled cumulant generating functional WN in Eq. (84). We
get the topological complexity c in saddle point approximation by the normalization of the scaled cumulant generating
functional Eq. (89) WN [0] != 0 as

c = −iµ̃T∗ µ∗ + ln Ω [µ∗, µ̃∗] . (125)

Based on the results of Sec. B 1, the topological complexity is shown in Fig. 1(d). This result substantially deviates
from the result in [11] for g > 1, hence our methods extends range of validity, g = 1 + ε, 0 < ε≪ 1 required in [11].
Critical g.– In the main text we discuss the transition from a system without fixed points to a positive topological

complexity c > 0. The transition point is computed as the root of Eq. (125).
Next, in the main text, we show the transition line to chaos. The result presented there is based on the dynamic

mean-field computation in [13]. The case of quenched noise, as [13] puts it, which also we are interested in, slightly
differs from the white noise case. This is for two reasons: First, at infinity, the autocorrelation function does not
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drop to zero but remains positive. Second, the stability of the quenched-noise system is completely determined by
the Jacobian of the dynamics. Hence, the criterion for the transition to chaos is that of the spectral radius of the
Jacobian crossing unity

1 = g2 ⟨φ′(√c0z)2⟩ (126)

where z is standard normal. Here, c0 is the equal-time autocorrelation, which follows from “energy conservation” in
the particle-in-a-potential analogy [13] as

− 1

2
c2∞ + g2fΦ(c∞, c0) + c∞D = −1

2
c20 + g2fΦ(c0, c0) + c0D (127)

where fu(x, y) = ∬ Dz1Dz2u (√y − x2

y
z1 + x√

y
z2)u (√yz2) and Dz = dz 1√

2π
e−z2/2. Lastly, demanding a constant

autocorrelation c∞ at infinite timelag τ = ∞ gives

c∞ = g2fφ(c∞, c0) +D. (128)

We solve Eqs. (126), (127), and (128) with a damped fixed point iteration. This yields the critical coupling strength
gc at which the transition to chaos occurs, and which is shown in the main text.

3. Jacobian spectrum at fixed points

Here, we want to characterize the spectrum of the Jacobian Eq. (5) at fixed points. The Jacobian reads

y′(x) = −1 + Jdiag [φ′(x)] (129)

where Jij
i.i.d.∼ N(0, g2/N). For random matrices of this type, it is known that the spectrum of eigenvalues is self-

averaging [6, Theorem 1.14]. Ahmadian et al. [8] provide a general framework for computing the spectrum of arbitrary
random matrices of the formM +LXR where Xij are i.i.d. with zero mean and variance 1/N . Since the identity
in Eq. (129) only contributes a shift of −1 of the eigenvalues of y′(x), we can use the method by Ahmadian et al.
for the simpler caseM = 0, L = 1, and R = g diag[φ′(x)], where we pulled the factor g out of J explicitly to match
the notation by Ahmadian et al. The special case of random matrices with zero mean is described by Ahmadian et
al. starting from [8, Eq. (2.13)] for the support R(x) = √

1
N ∑Ni=1 σ

2
i where σi are the singular values of LR, thus

the eigenvalues of Λ since Λij = δijgφ′(xi) > 0. In terms of the distribution of XΛ(x), σi = gφ′(xi) is the standard
deviation of the matrix elements in the ith column. Thus, we have the support

R(x) = g
√

1

N
φ′(x)Tφ′(x). (130)

Outside of this support, the spectral density vanishes. Within the support, the spectral density is isotropic around
the center at −1 + 0i, which comes from the identity −1 that we pulled out. The spectral density

ν(r) = − 1

2πr
∂rnx(r) (131)

can hence be derived from the radial tail distribution, i.e. the proportion of eigenvalues further than r from the center,
nx(r) [8, Eq. (2.14)]. This is the fundamental theorem of calculus in polar coordinates. The proportion nx(r) is
given by [8, Eq. (2.15)]

1 = 1

N

N∑
i=1

1
r2[gφ′(xi)]2 + nx(r) for r < R
and nx(r) = 0 for r ≥ R

(132)

Note that for the case of identically distributed columns (xi = x for all i), Eq. (132) can be solved n(r) = 1 −
r2/ [gφ′(x)]2, hence ν(r) = 1/ [πR(x)]2 = const. w.r.t. r, and reflects the circular law which states that the spectrum
of i.i.d. random matrices is uniform [6].
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We are, however, interested in the case where xi are different, namely sampled from the expected empirical measure
to give the expected spectral distribution of the Jacobian at fixed points. Since both the spectral radius and the
defining equation of nx depend on x through network sums ∑Ni=1 f(xi) only, both can be expressed in terms of the
empirical measure

R[µx] = g√∫ dy µx(y)φ′(y)2, 1 = ∫ dy µx(y) 1
r2[gφ′(y)]2 + nµx(r) . (133)

Consequently, their expected values are given by R[µ∗] and nµ∗(r) respectively. The latter is computed using a
bisection algorithm. The results are shown in the main text Fig. 2.

D. Correlation despite separation

In the main text we discuss the apparent contradiction that the dynamics’ velocity is strongly correlated with the
prediction by the nearest fixed point despite the separation of shells. Here, we give some more technical details on
this discussion.

1. Impact of fixed points

To measure the impact of fixed points we fix a realization of the connectivity J and the static noise η. Then, we
use a high performance cluster, as outlined in Sec. E, to get a large fraction of the fixed points for that realization.
Next, we integrate the model for the same realization and ask at every time point along the trajectory x(t) which
one of the many fixed points is the closest. The distance ∥x(t) − x∗∥, where x∗ is closest at time t, is shown in the
main text (Fig. 3). At the same time, we compute the Pearson correlation

c(t) = y[x(t)]T [y′(x∗)(x −x∗)]∥y[x(t)]∥∥y′(x∗)(x −x∗)∥ (134)

of the actual velocity and the one predicted by the nearest fixed point. To compare all these ‘drive-bys’, we normalize
the time T during which a certain fixed point is the closest to 1.

2. Tangentially fixed points and lines

To bridge the gap between the inner fixed point shell and the outer dynamics shell, we consider tangentially
fixed points. Tangentially fixed points are fixed points of an equivalent model, wherein the distance is constrained∥x(t)∥ != r. The dynamics of the constraint model follows by subtracting the radial velocity xxTy(x)/∥x∥2 from the
original model, yielding

ẋ = −xTJφ(x)
xTx

x + Jφ(x). (135)

Thus, tangentially fixed points are solutions of

Jφ(x) = xTJφ(x)
xTx

x ⇔ xxTJφ(x) = r2Jφ(x). (136)

Since Eq. (136) is the eigenvalue equation of a rank 1 matrix, the solution is unique up to a scalar factor, Jφ(x) =(1 + s)x.
For the tangentially fixed lines shown in the main text Fig. 3, we start with fixed points x and their exact distance

to the origin r = ∥x∥ (here, s = 0). Then we incrementally change this distance r → r +∆r and compute the solution
of Eq. (136) using the Levenberg-Marquart rootfinder initialized at the last known tangentially fixed point. Moving
to larger (smaller) radii r along the fixed line corresponds to building up a radial velocity towards (away from) the
origin. Towards the inside, all tangentially fixed lines stop; numerically this is detected by noting that no tangentially
fixed points can be found anymore in the vicinity and under the distance-constraint. Note that in the linear regime
of the phase space, tangentially fixed points cannot exist in exponential abundance anymore, hence tangentially fixed
lines have to end. Towards the outside, most fixed lines did not end within the interval of integration, some lines
however did in the same manner as towards the inside.
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Figure 4. Saturation of the fixed point finder. For each number of unique fixed points (x-axis) we show the number of candidates
needed (y-axis, red solid line). The black dashed curve shows the fit to the function nc(nu) = p1 ((nu − p2)−p3 − p−p32 ). The
dashed vertical line denotes the pole position p2. It estimates the expected number of unique fixed points. Here, N = 100.

E. Numerical fixed point finding

To test the analytical results about the statistics of the fixed points, we compare them to statistics of large numbers
of fixed points obtained for specific realizations of the random connectivity J and noise η by brute force fixed point
finding.

To this end, we first sample J and η randomly using the variances g2/N and D respectively. The number of neurons
is N = 100 for all fixed point finding procedures.

Next, we employ a Levenberg-Marquart minimizer on the velocity field y(x) = −x + Jφ(x) + η starting from
1.5 × 109 to 10 × 109 initial conditions sampled from a normal distribution of large variance. The exact number of
initial conditions is chosen such that the procedure, if possible, saturates, see below.

Since Levenberg-Marquart is a minimizer, we next sort out slow points, i.e., points at which the norm of the velocity
is locally minimal but not zero; for a point to be counted as fixed point, the norm of the velocity is required to be< 10−6. We call the resulting list of fixed points candidates.

1. Saturation

Due to the large number of initial conditions, some fixed points are found repeatedly in the list of candidates.
Furthermore, fixed points with certain properties (e.g. a small norm) seem to be found more likely than others. To
remove this bias, resulting from the choice of the ensemble of initial conditions and from the mechanics of Levenberg-
Marquart, we use a high number of initial conditions and sort out duplicates.

To test whether the number of initial conditions is high enough, we monitor the saturation: Iterating through the
list of candidates, for each new unique fixed point found (say, number nu), we count the number nc of candidates
needed to find nu unique fixed points. At the beginning of the iteration, nc ≈ nu, because almost every candidate
has been unknown before. Along the list of candidates, nc grows supra-linearly, as more and more candidates are
already contained in the list of unique fixed points and hence more candidates are needed to find a new unique fixed
point. When nc ≫ nd, the procedure is saturated in the sense that a large fraction of the fixed points accessible to
Levenberg-Marquart seem to be found. The flow of the saturation nc is shown in Fig. 4.

Assuming a finite number of fixed points, we expect a pole in the function nc(nu) at the position of the (unknown)
complete number of unique fixed points nu ≡ p2. A generic function for such a pole is (nu − p2)−p3 where p3 > 0.
Setting the y-axis intercept to 0 requires subtracting p−p32 . To allow for an arbitrary overall scale, we further multiply
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Figure 5. Norm saturation. Distribution of the scaled squared norm u = 1
N
x∗Tx∗ of fixed points. The color denotes the number

of fixed points taken into account: The purple line denotes the distribution of a first batch of fixed points. The yellow line uses
all fixed points found. The dotted lines show the theory based on Eqs. (123) and (124).

the function by p1. Hence, we fit the saturation flow to the function nc(nu) = p1 [(nu − p2)−p3 − p−p32 ], see Fig. 4.
With this, p2 is the extrapolated estimate of the number of unique fixed points. This number is shown in the main
text in Fig. 1(e).

To understand the bias of the fixed point finder, we further show in Fig. 5 how the norm distribution of the fixed
points changes after acquiring more and more fixed points. Here, we observe that especially for poorly saturated
searches (e.g. g = 5, D = 0, see upper right panel in Fig. 4), the procedure finds fixed points with a small norm more
likely. Only by sorting out duplicates, the norm distribution shifts towards the expected distribution, however not
reaching it in time.
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