000910248 001__ 910248
000910248 005__ 20230929112456.0
000910248 0247_ $$2doi$$a10.1016/j.pmatsci.2022.101037
000910248 0247_ $$2Handle$$a2128/33351
000910248 0247_ $$2WOS$$aWOS:000910083800001
000910248 037__ $$aFZJ-2022-03709
000910248 041__ $$aEnglish
000910248 082__ $$a530
000910248 1001_ $$0P:(DE-Juel1)131013$$aUrban, Knut W.$$b0$$eCorresponding author
000910248 245__ $$aProgress in atomic-resolution aberration corrected conventional transmission electron microscopy (CTEM)
000910248 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2023
000910248 3367_ $$2DRIVER$$aarticle
000910248 3367_ $$2DataCite$$aOutput Types/Journal article
000910248 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1673962915_26809
000910248 3367_ $$2BibTeX$$aARTICLE
000910248 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000910248 3367_ $$00$$2EndNote$$aJournal Article
000910248 520__ $$aTransmission electron microscopy is an indispensable tool in modern materials science. It enables the structure of materials to be studied with high spatial resolution, and thus makes a decisive contribution to the fact that it is now possible to understand the microstructure-related physical and chemical characteristics and to correlate these with the macroscopic materials properties. It was tantamount to a paradigm shift when electron microscopy reached atomic resolution in the late 1990s due to the invention of aberration-corrected electron optics. It is now generally accepted practice to perform picometer-scale measurements and chemical analyses with reference to single atomic units. This review has three objectives. Microscopy in atomic dimensions is applied quantum physics. The consequences of this for practical work and for the understanding and application of the results shall be worked out. Typical applications in materials science will be used to show what can be done with this kind of microscopy and where its limitations lie. In the absence of relevant monographs, the aim is to provide an introduction to this new type of electron microscopy and to enable the reader to access the literature in which special issues are addressed. The paper begins with a brief presentation of the principles of optical aberration correction. It then discusses the fundamentals of atomic imaging and covers typical examples of practical applications to problems in modern materials science. It is emphasized that in atomic-resolution electron microscopy the quantitative interpretation of the images must always be based on the solution of the quantum physical and optical problem on a computer.
000910248 536__ $$0G:(DE-HGF)POF4-5351$$a5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)$$cPOF4-535$$fPOF IV$$x0
000910248 536__ $$0G:(DE-HGF)POF4-5353$$a5353 - Understanding the Structural and Functional Behavior of Solid State Systems (POF4-535)$$cPOF4-535$$fPOF IV$$x1
000910248 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000910248 7001_ $$0P:(DE-Juel1)130525$$aBarthel, Juri$$b1
000910248 7001_ $$0P:(DE-HGF)0$$aHouben, Lothar$$b2
000910248 7001_ $$0P:(DE-HGF)0$$aJia, Chun-Lin$$b3
000910248 7001_ $$0P:(DE-HGF)0$$aJin, Lei$$b4
000910248 7001_ $$0P:(DE-Juel1)130796$$aLentzen, Markus$$b5
000910248 7001_ $$00000-0001-5711-850X$$aMi, Shao-Bo$$b6
000910248 7001_ $$0P:(DE-Juel1)131002$$aThust, Andreas$$b7
000910248 7001_ $$0P:(DE-Juel1)131004$$aTillmann, Karsten$$b8
000910248 773__ $$0PERI:(DE-600)2015705-8$$a10.1016/j.pmatsci.2022.101037$$gp. 101037 -$$p101037 -$$tProgress in materials science$$v133$$x0048-5500$$y2023
000910248 8564_ $$uhttps://juser.fz-juelich.de/record/910248/files/Invoice_F1074453.pdf
000910248 8564_ $$uhttps://juser.fz-juelich.de/record/910248/files/Invoice_RLNK504791572.pdf
000910248 8564_ $$uhttps://juser.fz-juelich.de/record/910248/files/Invoice_RLNK504796216.pdf
000910248 8564_ $$uhttps://juser.fz-juelich.de/record/910248/files/Invoice_RLNK504797771.pdf
000910248 8564_ $$uhttps://juser.fz-juelich.de/record/910248/files/1-s2.0-S0079642522001189-main-1.pdf$$yOpenAccess
000910248 8767_ $$8RLNK504797771$$92022-10-09$$a1200185253$$d2022-10-20$$ePermission$$jZahlung erfolgt
000910248 8767_ $$8RLNK504796216$$92022-10-07$$a1200185252$$d2022-10-20$$ePermission$$jZahlung erfolgt
000910248 8767_ $$8RLNK504791572$$92022-10-04$$a1200185251$$d2022-10-20$$ePermission$$jZahlung erfolgt
000910248 8767_ $$8F1074453$$92022-11-29$$a1200190111$$d2023-01-26$$eReprint$$jZahlung erfolgt
000910248 8767_ $$d2023-05-17$$eHybrid-OA$$jZahlung erfolgt$$zUmbuchung
000910248 909CO $$ooai:juser.fz-juelich.de:910248$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000910248 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131013$$aForschungszentrum Jülich$$b0$$kFZJ
000910248 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130525$$aForschungszentrum Jülich$$b1$$kFZJ
000910248 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b4$$kFZJ
000910248 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130796$$aForschungszentrum Jülich$$b5$$kFZJ
000910248 9101_ $$0I:(DE-HGF)0$$60000-0001-5711-850X$$aExternal Institute$$b6$$kExtern
000910248 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131002$$aForschungszentrum Jülich$$b7$$kFZJ
000910248 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131004$$aForschungszentrum Jülich$$b8$$kFZJ
000910248 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5351$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
000910248 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5353$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x1
000910248 9141_ $$y2023
000910248 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000910248 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000910248 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-23
000910248 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000910248 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-23
000910248 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000910248 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-22
000910248 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-22
000910248 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-22
000910248 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-08-22
000910248 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-22
000910248 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPROG MATER SCI : 2022$$d2023-08-22
000910248 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-22
000910248 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-22
000910248 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-22
000910248 915__ $$0StatID:(DE-HGF)9930$$2StatID$$aIF >= 30$$bPROG MATER SCI : 2022$$d2023-08-22
000910248 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000910248 9201_ $$0I:(DE-Juel1)ER-C-2-20170209$$kER-C-2$$lMaterialwissenschaft u. Werkstofftechnik$$x1
000910248 980__ $$ajournal
000910248 980__ $$aVDB
000910248 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000910248 980__ $$aI:(DE-Juel1)ER-C-2-20170209
000910248 980__ $$aAPC
000910248 980__ $$aUNRESTRICTED
000910248 9801_ $$aAPC
000910248 9801_ $$aFullTexts