001     910248
005     20230929112456.0
024 7 _ |a 10.1016/j.pmatsci.2022.101037
|2 doi
024 7 _ |a 2128/33351
|2 Handle
024 7 _ |a WOS:000910083800001
|2 WOS
037 _ _ |a FZJ-2022-03709
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Urban, Knut W.
|0 P:(DE-Juel1)131013
|b 0
|e Corresponding author
245 _ _ |a Progress in atomic-resolution aberration corrected conventional transmission electron microscopy (CTEM)
260 _ _ |a Amsterdam [u.a.]
|c 2023
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1673962915_26809
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Transmission electron microscopy is an indispensable tool in modern materials science. It enables the structure of materials to be studied with high spatial resolution, and thus makes a decisive contribution to the fact that it is now possible to understand the microstructure-related physical and chemical characteristics and to correlate these with the macroscopic materials properties. It was tantamount to a paradigm shift when electron microscopy reached atomic resolution in the late 1990s due to the invention of aberration-corrected electron optics. It is now generally accepted practice to perform picometer-scale measurements and chemical analyses with reference to single atomic units. This review has three objectives. Microscopy in atomic dimensions is applied quantum physics. The consequences of this for practical work and for the understanding and application of the results shall be worked out. Typical applications in materials science will be used to show what can be done with this kind of microscopy and where its limitations lie. In the absence of relevant monographs, the aim is to provide an introduction to this new type of electron microscopy and to enable the reader to access the literature in which special issues are addressed. The paper begins with a brief presentation of the principles of optical aberration correction. It then discusses the fundamentals of atomic imaging and covers typical examples of practical applications to problems in modern materials science. It is emphasized that in atomic-resolution electron microscopy the quantitative interpretation of the images must always be based on the solution of the quantum physical and optical problem on a computer.
536 _ _ |a 5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)
|0 G:(DE-HGF)POF4-5351
|c POF4-535
|f POF IV
|x 0
536 _ _ |a 5353 - Understanding the Structural and Functional Behavior of Solid State Systems (POF4-535)
|0 G:(DE-HGF)POF4-5353
|c POF4-535
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Barthel, Juri
|0 P:(DE-Juel1)130525
|b 1
700 1 _ |a Houben, Lothar
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Jia, Chun-Lin
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Jin, Lei
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Lentzen, Markus
|0 P:(DE-Juel1)130796
|b 5
700 1 _ |a Mi, Shao-Bo
|0 0000-0001-5711-850X
|b 6
700 1 _ |a Thust, Andreas
|0 P:(DE-Juel1)131002
|b 7
700 1 _ |a Tillmann, Karsten
|0 P:(DE-Juel1)131004
|b 8
773 _ _ |a 10.1016/j.pmatsci.2022.101037
|g p. 101037 -
|0 PERI:(DE-600)2015705-8
|p 101037 -
|t Progress in materials science
|v 133
|y 2023
|x 0048-5500
856 4 _ |u https://juser.fz-juelich.de/record/910248/files/Invoice_F1074453.pdf
856 4 _ |u https://juser.fz-juelich.de/record/910248/files/Invoice_RLNK504791572.pdf
856 4 _ |u https://juser.fz-juelich.de/record/910248/files/Invoice_RLNK504796216.pdf
856 4 _ |u https://juser.fz-juelich.de/record/910248/files/Invoice_RLNK504797771.pdf
856 4 _ |u https://juser.fz-juelich.de/record/910248/files/1-s2.0-S0079642522001189-main-1.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:910248
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)131013
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130525
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)130796
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 0000-0001-5711-850X
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)131002
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)131004
913 1 _ |a DE-HGF
|b Key Technologies
|l Materials Systems Engineering
|1 G:(DE-HGF)POF4-530
|0 G:(DE-HGF)POF4-535
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Materials Information Discovery
|9 G:(DE-HGF)POF4-5351
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Materials Systems Engineering
|1 G:(DE-HGF)POF4-530
|0 G:(DE-HGF)POF4-535
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Materials Information Discovery
|9 G:(DE-HGF)POF4-5353
|x 1
914 1 _ |y 2023
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-23
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-23
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-08-22
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PROG MATER SCI : 2022
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-22
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-22
915 _ _ |a IF >= 30
|0 StatID:(DE-HGF)9930
|2 StatID
|b PROG MATER SCI : 2022
|d 2023-08-22
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 0
920 1 _ |0 I:(DE-Juel1)ER-C-2-20170209
|k ER-C-2
|l Materialwissenschaft u. Werkstofftechnik
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 _ _ |a I:(DE-Juel1)ER-C-2-20170209
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21