000910253 001__ 910253
000910253 005__ 20240712084525.0
000910253 0247_ $$2doi$$a10.1002/solr.202101050
000910253 0247_ $$2Handle$$a2128/32697
000910253 0247_ $$2WOS$$aWOS:000752937700001
000910253 037__ $$aFZJ-2022-03714
000910253 082__ $$a600
000910253 1001_ $$0P:(DE-Juel1)178007$$aEberst, Alexander$$b0$$eCorresponding author
000910253 245__ $$aOptical Optimization Potential of Transparent‐Passivated Contacts in Silicon Solar Cells
000910253 260__ $$aWeinheim$$bWiley-VCH$$c2022
000910253 3367_ $$2DRIVER$$aarticle
000910253 3367_ $$2DataCite$$aOutput Types/Journal article
000910253 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1669106874_16660
000910253 3367_ $$2BibTeX$$aARTICLE
000910253 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000910253 3367_ $$00$$2EndNote$$aJournal Article
000910253 520__ $$aHerein, an optical loss analysis of the recently introduced silicon carbide–based transparent passivating contact (TPC) for silicon heterojunction solar cells is presented, the most dominant losses are identified, and the potential for reducing these losses is discussed. Magnesium fluoride is applied as an antireflective coating to reduce the reflective losses by up to 0.8 mA cm−2. When applying the magnesium fluoride, the passivation quality of the layer stack degrades, but is restored after annealing on a hot plate in ambient air. Afterwards, a road map for TPC solar cells toward an efficiency of 25% is presented and discussed. The largest part in efficiency gain is achieved by reducing the finger width and by increasing the passivation quality. Furthermore, it is shown that TPC solar cells have the potential to achieve short-circuit current densities above 42 mA cm−2 if the finger width is reduced and the front-side indium tin oxide (ITO) layer can be replaced by an ITO silicon nitride double layer.
000910253 536__ $$0G:(DE-HGF)POF4-1215$$a1215 - Simulations, Theory, Optics, and Analytics (STOA) (POF4-121)$$cPOF4-121$$fPOF IV$$x0
000910253 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000910253 7001_ $$0P:(DE-Juel1)179571$$aZamchiy, Alexandr$$b1
000910253 7001_ $$0P:(DE-Juel1)178049$$aQiu, Kaifu$$b2
000910253 7001_ $$0P:(DE-Juel1)186036$$aWinkel, Peter$$b3
000910253 7001_ $$0P:(DE-Juel1)179456$$aGebrewold, Habtamu T.$$b4
000910253 7001_ $$0P:(DE-Juel1)130263$$aLambertz, Andreas$$b5
000910253 7001_ $$0P:(DE-Juel1)169946$$aDuan, Weiyuan$$b6
000910253 7001_ $$0P:(DE-Juel1)174415$$aLi, Shenghao$$b7
000910253 7001_ $$0P:(DE-Juel1)130219$$aBittkau, Karsten$$b8
000910253 7001_ $$0P:(DE-Juel1)159457$$aKirchartz, Thomas$$b9
000910253 7001_ $$0P:(DE-Juel1)143905$$aRau, Uwe$$b10$$ufzj
000910253 7001_ $$0P:(DE-Juel1)130233$$aDing, Kaining$$b11
000910253 773__ $$0PERI:(DE-600)2882014-9$$a10.1002/solr.202101050$$gVol. 6, no. 6, p. 2101050 -$$n6$$p2101050 -$$tSolar RRL$$v6$$x2367-198X$$y2022
000910253 8564_ $$uhttps://juser.fz-juelich.de/record/910253/files/Revised%20Manuscript_final.docx$$yOpenAccess
000910253 8564_ $$uhttps://juser.fz-juelich.de/record/910253/files/Solar%20RRL%20-%202022%20-%20Eberst%20-%20Optical%20Optimization%20Potential%20of%20Transparent%E2%80%90Passivated%20Contacts%20in%20Silicon%20Solar%20Cells.pdf$$yOpenAccess
000910253 8767_ $$d2022-02-15$$eHybrid-OA$$jDEAL
000910253 909CO $$ooai:juser.fz-juelich.de:910253$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
000910253 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178007$$aForschungszentrum Jülich$$b0$$kFZJ
000910253 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179456$$aForschungszentrum Jülich$$b4$$kFZJ
000910253 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130263$$aForschungszentrum Jülich$$b5$$kFZJ
000910253 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169946$$aForschungszentrum Jülich$$b6$$kFZJ
000910253 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130219$$aForschungszentrum Jülich$$b8$$kFZJ
000910253 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159457$$aForschungszentrum Jülich$$b9$$kFZJ
000910253 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143905$$aForschungszentrum Jülich$$b10$$kFZJ
000910253 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130233$$aForschungszentrum Jülich$$b11$$kFZJ
000910253 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1215$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
000910253 9141_ $$y2022
000910253 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000910253 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-29$$wger
000910253 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000910253 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000910253 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000910253 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSOL RRL : 2021$$d2022-11-16
000910253 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-16
000910253 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-16
000910253 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-16
000910253 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-16
000910253 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-16
000910253 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-16
000910253 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bSOL RRL : 2021$$d2022-11-16
000910253 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000910253 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000910253 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000910253 915pc $$0PC:(DE-HGF)0120$$2APC$$aDEAL: Wiley 2019
000910253 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
000910253 9801_ $$aFullTexts
000910253 980__ $$ajournal
000910253 980__ $$aVDB
000910253 980__ $$aUNRESTRICTED
000910253 980__ $$aI:(DE-Juel1)IEK-5-20101013
000910253 980__ $$aAPC
000910253 981__ $$aI:(DE-Juel1)IMD-3-20101013