001     910253
005     20240712084525.0
024 7 _ |a 10.1002/solr.202101050
|2 doi
024 7 _ |a 2128/32697
|2 Handle
024 7 _ |a WOS:000752937700001
|2 WOS
037 _ _ |a FZJ-2022-03714
082 _ _ |a 600
100 1 _ |a Eberst, Alexander
|0 P:(DE-Juel1)178007
|b 0
|e Corresponding author
245 _ _ |a Optical Optimization Potential of Transparent‐Passivated Contacts in Silicon Solar Cells
260 _ _ |a Weinheim
|c 2022
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1669106874_16660
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Herein, an optical loss analysis of the recently introduced silicon carbide–based transparent passivating contact (TPC) for silicon heterojunction solar cells is presented, the most dominant losses are identified, and the potential for reducing these losses is discussed. Magnesium fluoride is applied as an antireflective coating to reduce the reflective losses by up to 0.8 mA cm−2. When applying the magnesium fluoride, the passivation quality of the layer stack degrades, but is restored after annealing on a hot plate in ambient air. Afterwards, a road map for TPC solar cells toward an efficiency of 25% is presented and discussed. The largest part in efficiency gain is achieved by reducing the finger width and by increasing the passivation quality. Furthermore, it is shown that TPC solar cells have the potential to achieve short-circuit current densities above 42 mA cm−2 if the finger width is reduced and the front-side indium tin oxide (ITO) layer can be replaced by an ITO silicon nitride double layer.
536 _ _ |a 1215 - Simulations, Theory, Optics, and Analytics (STOA) (POF4-121)
|0 G:(DE-HGF)POF4-1215
|c POF4-121
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Zamchiy, Alexandr
|0 P:(DE-Juel1)179571
|b 1
700 1 _ |a Qiu, Kaifu
|0 P:(DE-Juel1)178049
|b 2
700 1 _ |a Winkel, Peter
|0 P:(DE-Juel1)186036
|b 3
700 1 _ |a Gebrewold, Habtamu T.
|0 P:(DE-Juel1)179456
|b 4
700 1 _ |a Lambertz, Andreas
|0 P:(DE-Juel1)130263
|b 5
700 1 _ |a Duan, Weiyuan
|0 P:(DE-Juel1)169946
|b 6
700 1 _ |a Li, Shenghao
|0 P:(DE-Juel1)174415
|b 7
700 1 _ |a Bittkau, Karsten
|0 P:(DE-Juel1)130219
|b 8
700 1 _ |a Kirchartz, Thomas
|0 P:(DE-Juel1)159457
|b 9
700 1 _ |a Rau, Uwe
|0 P:(DE-Juel1)143905
|b 10
|u fzj
700 1 _ |a Ding, Kaining
|0 P:(DE-Juel1)130233
|b 11
773 _ _ |a 10.1002/solr.202101050
|g Vol. 6, no. 6, p. 2101050 -
|0 PERI:(DE-600)2882014-9
|n 6
|p 2101050 -
|t Solar RRL
|v 6
|y 2022
|x 2367-198X
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/910253/files/Revised%20Manuscript_final.docx
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/910253/files/Solar%20RRL%20-%202022%20-%20Eberst%20-%20Optical%20Optimization%20Potential%20of%20Transparent%E2%80%90Passivated%20Contacts%20in%20Silicon%20Solar%20Cells.pdf
909 C O |o oai:juser.fz-juelich.de:910253
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)178007
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)179456
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)130263
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)169946
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)130219
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)159457
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)143905
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)130233
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-121
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Photovoltaik und Windenergie
|9 G:(DE-HGF)POF4-1215
|x 0
914 1 _ |y 2022
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-01-29
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-29
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-29
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SOL RRL : 2021
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-16
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b SOL RRL : 2021
|d 2022-11-16
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DEAL: Wiley 2019
|2 APC
|0 PC:(DE-HGF)0120
920 1 _ |0 I:(DE-Juel1)IEK-5-20101013
|k IEK-5
|l Photovoltaik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-5-20101013
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IMD-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21