000910283 001__ 910283
000910283 005__ 20221109130726.0
000910283 037__ $$aFZJ-2022-03725
000910283 1001_ $$0P:(DE-Juel1)177041$$aShehada, Sufyan$$b0$$ufzj
000910283 1112_ $$aPalestinian Conference on Modern Trends in Mathematics and Physics VII$$cBirzeit$$d2022-07-30 - 2022-08-01$$wPalestine
000910283 245__ $$aInterplay of magnetic states and hyperfine fields of iron dimers on MgO(001)
000910283 260__ $$c2022
000910283 3367_ $$033$$2EndNote$$aConference Paper
000910283 3367_ $$2DataCite$$aOther
000910283 3367_ $$2BibTeX$$aINPROCEEDINGS
000910283 3367_ $$2DRIVER$$aconferenceObject
000910283 3367_ $$2ORCID$$aLECTURE_SPEECH
000910283 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1667970344_24030$$xOther
000910283 520__ $$aIndividual nuclear spin states can have very long lifetimes and could be useful as qubits. Progress in this direction was achieved on MgO/Ag(001) via detection of the hyperfine interaction (HFI) of Fe, Ti and Cu adatoms using scanning tunneling microscopy. Previously, we systematically quantified from first-principles the HFI for the whole series of 3d transition adatoms (Sc-Cu) deposited on various ultra-thin insulators, establishing the trends of the computed HFI with respect to the filling of the magnetic s- and d-orbitals of the adatoms and on the bonding with the substrate. Here we explore the case of dimers by investigating the correlation between the HFI and the magnetic state of free standing Fe dimers, single Fe adatoms and dimers deposited on a bilayer of MgO(001). We find that the magnitude of the HFI can be controlled by switching the magnetic state of the dimers. For short Fe-Fe distances, the antiferromagnetic state enhances the HFI with respect to that of the ferromagnetic state. By increasing the distance between the magnetic atoms, a transition toward the opposite behavior is observed. Furthermore, we demonstrate the ability to substantially modify the HFI by atomic control of the location of the adatoms on the substrate. Our results establish the limits of applicability of the usual hyperfine hamiltonian and we propose an extension based on multiple scattering processes.
000910283 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
000910283 7001_ $$0P:(DE-Juel1)130805$$aLounis, Samir$$b1$$ufzj
000910283 7001_ $$0P:(DE-Juel1)145395$$ados Santos Dias, Manuel$$b2$$ufzj
000910283 7001_ $$0P:(DE-HGF)0$$aAbusaa, Muayad$$b3
000910283 909CO $$ooai:juser.fz-juelich.de:910283$$pVDB
000910283 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177041$$aForschungszentrum Jülich$$b0$$kFZJ
000910283 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130805$$aForschungszentrum Jülich$$b1$$kFZJ
000910283 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145395$$aForschungszentrum Jülich$$b2$$kFZJ
000910283 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
000910283 9141_ $$y2022
000910283 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000910283 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000910283 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000910283 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000910283 980__ $$aconf
000910283 980__ $$aVDB
000910283 980__ $$aI:(DE-Juel1)IAS-1-20090406
000910283 980__ $$aI:(DE-Juel1)PGI-1-20110106
000910283 980__ $$aI:(DE-82)080009_20140620
000910283 980__ $$aI:(DE-82)080012_20140620
000910283 980__ $$aUNRESTRICTED