000910284 001__ 910284
000910284 005__ 20240308203405.0
000910284 0247_ $$2doi$$a10.3390/nano12203660
000910284 0247_ $$2Handle$$a2128/32075
000910284 0247_ $$2pmid$$a36296848
000910284 0247_ $$2WOS$$aWOS:000873859800001
000910284 037__ $$aFZJ-2022-03726
000910284 082__ $$a540
000910284 1001_ $$0P:(DE-Juel1)130644$$aFriedrich, Christoph$$b0$$eCorresponding author
000910284 245__ $$aQuasiparticle Self-Consistent GW Study of Simple Metals
000910284 260__ $$aBasel$$bMDPI$$c2022
000910284 3367_ $$2DRIVER$$aarticle
000910284 3367_ $$2DataCite$$aOutput Types/Journal article
000910284 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1666167872_18896
000910284 3367_ $$2BibTeX$$aARTICLE
000910284 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000910284 3367_ $$00$$2EndNote$$aJournal Article
000910284 520__ $$aThe GW method is a standard method to calculate the electronic band structure from first principles. It has been applied to a large variety of semiconductors and insulators but less often to metallic systems, in particular, with respect to a self-consistent employment of the method. In this work, we take a look at all-electron quasiparticle self-consistent GW (QSGW) calculations for simple metals (alkali and alkaline earth metals) based on the full-potential linearized augmented-plane-wave approach and compare the results to single-shot (i.e., non-selfconsistent) G0W0 calculations, density-functional theory (DFT) calculations in the local-density approximation, and experimental measurements. We show that, while DFT overestimates the bandwidth of most of the materials, the GW quasiparticle renormalization corrects the bandwidths in the right direction, but a full self-consistent calculation is needed to consistently achieve good agreement with photoemission data. The results mainly confirm the common belief that simple metals can be regarded as nearly free electron gases with weak electronic correlation. The finding is particularly important in light of a recent debate in which this seemingly established view has been contested.
000910284 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
000910284 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000910284 7001_ $$0P:(DE-Juel1)130548$$aBlügel, Stefan$$b1
000910284 7001_ $$0P:(DE-Juel1)180679$$aNabok, Dmitrii$$b2
000910284 773__ $$0PERI:(DE-600)2662255-5$$a10.3390/nano12203660$$gVol. 12, no. 20, p. 3660 -$$n20$$p3660 -$$tNanomaterials$$v12$$x2079-4991$$y2022
000910284 8564_ $$uhttps://juser.fz-juelich.de/record/910284/files/nanomaterials-12-03660.pdf$$yOpenAccess
000910284 8767_ $$d2024-03-08$$eAPC$$jZahlung erfolgt$$zOABLE Report 03/24
000910284 909CO $$ooai:juser.fz-juelich.de:910284$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$popenCost$$pdnbdelivery
000910284 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130644$$aForschungszentrum Jülich$$b0$$kFZJ
000910284 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b1$$kFZJ
000910284 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180679$$aForschungszentrum Jülich$$b2$$kFZJ
000910284 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
000910284 9141_ $$y2022
000910284 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000910284 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000910284 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000910284 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-05-04
000910284 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000910284 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-05-04
000910284 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANOMATERIALS-BASEL : 2021$$d2022-11-12
000910284 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-12
000910284 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-12
000910284 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-08-26T21:24:06Z
000910284 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-08-26T21:24:06Z
000910284 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2022-08-26T21:24:06Z
000910284 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-12
000910284 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-12
000910284 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-12
000910284 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-12
000910284 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-12
000910284 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNANOMATERIALS-BASEL : 2021$$d2022-11-12
000910284 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000910284 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000910284 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000910284 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
000910284 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000910284 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000910284 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000910284 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000910284 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x4
000910284 9801_ $$aFullTexts
000910284 980__ $$ajournal
000910284 980__ $$aVDB
000910284 980__ $$aUNRESTRICTED
000910284 980__ $$aI:(DE-Juel1)IAS-1-20090406
000910284 980__ $$aI:(DE-Juel1)PGI-1-20110106
000910284 980__ $$aI:(DE-82)080009_20140620
000910284 980__ $$aI:(DE-82)080012_20140620
000910284 980__ $$aI:(DE-Juel1)JSC-20090406
000910284 980__ $$aAPC