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Abstract: The GW method is a standard method to calculate the electronic band structure from first
principles. It has been applied to a large variety of semiconductors and insulators but less often to
metallic systems, in particular, with respect to a self-consistent employment of the method. In this
work, we take a look at all-electron quasiparticle self-consistent GW (QSGW) calculations for simple
metals (alkali and alkaline earth metals) based on the full-potential linearized augmented-plane-
wave approach and compare the results to single-shot (i.e., non-selfconsistent) G0W0 calculations,
density-functional theory (DFT) calculations in the local-density approximation, and experimental
measurements. We show that, while DFT overestimates the bandwidth of most of the materials,
the GW quasiparticle renormalization corrects the bandwidths in the right direction, but a full self-
consistent calculation is needed to consistently achieve good agreement with photoemission data.
The results mainly confirm the common belief that simple metals can be regarded as nearly free
electron gases with weak electronic correlation. The finding is particularly important in light of a
recent debate in which this seemingly established view has been contested.

Keywords: simple metals; excited states; electronic structure; spectral function; quasiparticles; density
functional theory; many-body perturbation theory; GW approximation; ab initio; computational
methods

1. Introduction

Over the last decades, the GW approximation has developed into a standard method
for the calculation of the electronic band structure. It relies on many-body perturbation
theory. The GW approximation to the electronic self-energy contains the exact-exchange
potential and a large part of electron correlation through the usage of a screened electron
interaction potential.

After Hedin [1] laid the theoretical foundation of the GW method in 1965, it took more
than twenty years until the first calculations for real solid-state systems were published,
independently by Hybertsen and Louie [2] and by Godby, Schlüter, and Sham [3]. They
showed that the calculated fundamental band gap of covalently bound semiconductors fell
within 0.1 eV of the experimental values. Since then, the GW method has been established
to yield significantly improved fundamental band gaps and band structures (albeit not
always with the accuracy reported in the early works) for a wide variety of semiconductors
and insulators compared to standard density-functional calculations.

Not long after the first calculations of semiconductors, the GW method was applied to
metals. Northrup and coworkers [4] demonstrated that the occupied bandwidth of bulk
sodium, known to be overestimated in Kohn–Sham DFT, shrinks upon a one-shot (i.e.,
non-selfconsistent) GW self-energy correction but not sufficiently to reach an agreement
with experiments. The authors then included an exchange-correlation kernel into the
screened interaction as well as energy-only self-consistency, thus going beyond the one-
shot approach, which eventually brought the theoretical bandwidth in close proximity
to the experimental value. The occupied bandwidth of bulk lithium, the other material
studied, was predicted to be 2.75 eV, close to that of Na. At the time, however, there was no
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experimental value to compare it with. Later, the bandwidth of Li was measured [5] to be
3.0 eV, a bit larger than their prediction but smaller than both the LDA and the one-shot
GW values.

Thus far, while not as extensively as for band-gap materials, the GW approximation
has been applied to a large variety of metallic systems, ranging from bulk transition
metals [6–11], rare earths [12,13] over halfmetals [14,15] to topological semimetals [16]
and many more. However, despite its significance for fundamental solid-state theory, the
bandwidth problem of simple metals has not been re-investigated in a systematic way until
very recently [17].

The authors of Ref. [17] compared the performance of several electronic-structure
methods in the description of simple sp metals. Among other methods, they considered
the one-shot GW approximation and embedded dynamical mean-field theory (eDMFT).
Their results confirm that one-shot GW improves on the local-density approximation (LDA)
description of Kohn–Sham DFT. In particular, in all cases, the GW bandwidth turns out
to be closer to the experiment than the corresponding LDA value, although a difference
to the experimental value remains. Furthermore, the authors investigated the role of local
correlations using eDMFT and showed that it yields bandwidth values in better agreement
to experiment values. This led the authors to claim that the electrons in simple metals
cannot be regarded as forming nearly free electron gases and that a proper treatment
requires local correlations (e.g., within eDMFT) to be taken into account, implying that
simple metals cannot be considered weakly correlated systems, quite contrary to common
belief.

In the present paper, we address this issue from a different perspective. We apply the
quasiparticle self-consistent GW (QSGW) method [18] to the bulk phases of simple metals
while leaving the electronic screening on the level of the random-phase approximation
(i.e., without local correlations). The QSGW method is a self-consistent variant of the GW
method, which not only allows the quasiparticle energies to change from iteration to itera-
tion but also the quasiparticle wavefunctions. In this sense, it goes beyond the energy-only
self-consistency mentioned earlier, as it also enables the electron density and the Hartree
potential to be optimized in the iterations. The QSGW method has been shown to improve
the description of many materials with respect to one-shot G0W0 calculations [18,19]. It has
also been applied to some of the materials considered here, namely Na [19,20] and K [20].
However, in all cases, the QSGW results turn out to be larger and, thus, further away from
the experiment than the one-shot G0W0 values of the present work.

To shed light on this issue, we have carried out systematic QSGW calculations for Li,
Be, Na, Mg, K, Ca, Rb, Sr, and Cs and found the resulting bandwidths in close agreement
with the experimental values. These results imply that the common understanding of
the simple metals as nearly free electron gases with weak correlation is fundamentally
correct. The success of eDMFT should, therefore, be attributed rather to the self-consistency
incorporated in eDMFT than to the inclusion of local correlations.

The paper is structured as follows. Section 2 recapitulates the GW approximation and
the QSGW approach with an emphasis on application to metals. The computational details
of the calculations are summarized in Section 3. Section 4 presents and discusses the results
of our calculations. Finally, we give the main conclusions of the study in Section 5.

2. Methods

The GW approximation is based on many-body perturbation theory with the interact-
ing single-particle Green function

G(r, r′; ε) = ∑
kn

ψkn(r)ψ∗kn(r
′)

ε− Ekn + iη sgn(ε− εF)
(1)

as the central quantity. Here, ψkn(r) and Ekn are the quasiparticle wavefunctions and
energies, respectively, εF is the Fermi energy, and η is a positive infinitesimal. Atomic
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units are used except where noted otherwise. According to Equation (1), the single-particle
excitation spectrum is encoded in the pole structure of the Green function. As an auxiliary
function, we introduce the non-interacting Green function, usually denoted by G0(r, r′; ε).
It is defined by Equation (1) with eigensolutions ϕkn(r) and εkn of a mean-field system
instead of ψkn(r) and Ekn. The interacting Green function (Equation (1)) is related to the
non-interacting Green function via the Dyson equation, which can be formulated as an
effective quasiparticle equation of motion[
−∇

2
+ Vext(r) +

∫ n(r′)
|r− r′|d

3r′
]

ψkn(r) +
∫

d3r′ Σ(r, r′; Ekn)ψkn(r′) = Eknψk(r) (2)

with the external potential Vext(r) and the electron number density n(r). The electronic
self-energy is approximated by

Σ(r, r′; ε) =
i

2π

∫ ∞

−∞
dε′ G(r, r′; ε + ε′)W(r′, r; ε′)eiηε′ , (3)

the so-called GW approximation, with the screened Coulomb interaction potential

W(r, r′; ε) = v(r, r′) +
∫

v(r, r′′)P(r′′, r′′′; ε)W(r′′′, r′; ε) d3r′′ d3r′′′ (4)

and the bare interaction potential v(r, r′) = 1/|r− r′|. For the polarization function, we
employ the random-phase approximation

P(r, r′; ε) =
−1
π

∫ ∞

−∞
dε′ G(r, r′; ε− ε′) G(r′, r; ε′) , (5)

where a factor of 2 has been included to take account of the electron spin. Since the materials
under investigation are all non-magnetic, an explicit spin dependence is omitted.

The GW self-energy, Equation (3), constitutes the leading-order term of an expansion of
the self-energy with respect to the screened Coulomb interaction potential [21]. Plugging the
first term of Equation (4) into Equation (3) yields the exact non-local exchange potential of
the Hartree–Fock method. The remainder of Equation (4), when inserted into Equation (3),
gives rise to a non-local dynamical scattering potential, which describes a large part of the
many-body correlation effects. It is also responsible for the emergence of lifetime effects
and plasmon satellites.

Equation (2) looks very similar to the Kohn–Sham equation. The only difference is
seen in the term describing electron exchange and correlation, which, in Equation (2),
contains the non-local and energy-dependent self-energy instead of the local and energy-
independent exchange-correlation potential vxc(r) of the Kohn–Sham equation. Another
important difference is that the energy eigenvalues Ekn, in contrast to the Kohn–Sham
eigenvalues, have a clear physical meaning. They can be interpreted as real excitation
energies of the interacting system. The eigenvalues are complex-valued. In addition to the
excitation energies, the imaginary part contains information about the lifetime broadening.

A more general way of presenting the quasiparticle band structure together with
the lifetime broadening (and potential satellite features) is by plotting the k-resolved
spectral function

A(k, ε) =
1
π

sgn(εF − ε)Im
{

Tr[εI − H0(k)− Σ(k, ε)]−1
}

(6)

with the trace operator Tr, the identity matrix I, the Hartree Hamiltonian H0(k) (i.e., the
matrix representation of the term in the square brackets of Equation (2)), and the matrix
representation of the self-energy. Note that peaks in the spectral function are expected at
energies ε, for which the expression in the square brackets vanishes or becomes minimal.
Recognizing that H0(k) + Σ(k, ε) is nothing else than the matrix representation of the
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left-hand side of Equation (2) reveals that the spectral function shows quasiparticle peaks
at the solutions of Equation (2).

The product of two Green functions (Equation (1)) gives rise to a double band sum-
mation in Equation (5), which can be interpreted as summing over all single-particle
excitations n → n′, where n and n′ run, respectively, over all occupied and unoccupied
states. In semiconductors and insulators, each band is either completely filled or completely
empty. In metallic systems, however, there are bands that are only partially filled. Then,
in order to sum over the excitations accurately, it is important to employ an interpolation
method for Ekn. We use the tetrahedron method [22] for this purpose. The k summations
are then treated as continuous k integrations with interpolated energies Ekn between the
explicit k points. Therefore, formally, an infinite system with infinitely many k points (and,
consequently, infinitely many unit cells) is treated.

The tetrahedron interpolation method enables a precise sampling of the Fermi sur-
face, which is also important for the Drude term, a special contribution to Equation (5),
which originates from infinitesimal excitations within the same band (intra-band) from
immediately below to immediately above the Fermi surface. This contribution arises only
in metallic systems and can be written as [9,23]

Pintra(k, ε) =
k2ω2

pl

4π

(
1
ε2 − iπ

∣∣∣∣dδ(ε)

dε

∣∣∣∣) (7)

with the plasma frequency ωpl, which can be calculated from an integration of the absolute
square of the momentum expectation value over the Fermi surface. The imaginary part of
Equation (7) is irrelevant in practice, and only the real part has to be considered.

Equations (1)–(5) pose a hen-and-egg problem. The quasiparticle energies Ekn and
wavefunctions ψkn(r) obtained from Equation (2) are needed to calculate the self-energy
and also the electron number density of Equation (2) in the first place. This calls for an
iterative solution, where one starts from a simple mean-field solution, e.g., from Kohn–
Sham DFT and cycles through the equations until self-consistency is achieved. This is
realized in the QSGW method.

The similarity of Equation (2) to the Kohn–Sham equation motivates us to make use
of an existing DFT code for such an implementation. For this purpose, it is necessary
to transform the non-Hermitian, energy-dependent self-energy operator to a Hermitian,
energy-independent operator, which then also turns the complex-valued quasiparticle
energies Ekn into real eigenvalues. This transformation should be defined in such a manner
that the new Hermitian self-energy is as close as possible to the original non-Hermitian
self-energy. Originally, Faleev and coworkers [18] suggested the following transformation

ΣH
nn′(k) =

1
4
[Σnn′(k, εkn) + Σ∗n′n(k, εkn) +Σnn′(k, εkn′) + Σ∗n′n(k, εkn′)] (8)

where the self-energy is represented in the single-particle eigenfunctions ϕkn(r) of the
previous iteration, and εkn are the corresponding eigenvalues. Obviously, this definition
makes the new self-energy operator ΣH

nn′(k) Hermitian and energy-independent.
The self-consistent procedure is started with a self-consistent Kohn–Sham DFT calcu-

lation, where the exchange-correlation potential vxc(r) can be regarded as an approximate
self-energy. This calculation yields the single-particle eigenstates ϕkn and εkn, which serve
as a first approximation to ψkn and Ekm and with which the self-energy Equation (3) is
evaluated. Solving Equation (2) with the resulting self-energy yields the (one-shot) G0W0
quasiparticle energies Ekn. Most GW studies stop at this point and are content with the
one-shot quasiparticle solutions. The QSGW method proceeds by constructing the Hermi-
tianized self-energy ΣH according to Equation (8), which replaces Σ of Equation (2) for the
first QSGW iteration.

To concretize the notion of ΣH to be as close as possible to the non-Hermitian self-
energy Σ, one can demand that the diagonal element of the effective Hamiltonian oper-
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ator of Equation (2) should approximate the quasiparticle energy Ekn. However, with
Equation (8), the diagonal element Ekn ≈ εkn + Re[Σnn(k, εkn)]− 〈ϕkn|vxc|ϕkn〉 exhibits
the wrong energy argument in the self-energy. To see this, add and subtract vxc(r)ψkn(r)
on the left-hand side of Equation (2) and treat Σ(Ekn)− vxc as a small perturbation. Per-
turbation theory then gives Ekn = εkn + Re[Σnn(k, Ekn)]− 〈ϕkn|vxc|ϕkn〉 for the real part,
which differs from the previous expression by the energy argument of the self-energy. It
was shown [16] that this inconsistency can cause an instability of the self-consistent cycle,
potentially resulting in convergence towards an unphysical solution. Therefore, we employ
the original definition Equation (8) only for the off-diagonal elements and use

ΣH
nn(k) =

1
2
[Σnn(k, Ekn) + Σ∗nn(k, Ekn)] (9)

for the diagonal elements. Note that Eq. (9) now contains the quasiparticle energies as
energy arguments in accordance with the expression from perturbation theory.

Equation (2) (with Σ → ΣH) is then solved iteratively until self-consistency in the
density n(r) is reached. During these iterations, the matrix ΣH is held fixed. Technically,
we add and subtract vxc(r)ψkn(r) in Equation (2) and fix the matrix ΣH − vxc. This has the
advantage that we have to intervene in the DFT code only once when we augment the
Hamiltonian by ΣH − vxc. Furthermore, the keeping of vxc in the program run in the usual
way enables using the same construction of the LAPW basis set (which relies on vxc) as in a
standard DFT calculation.

This completes the first QSGW iteration. The resulting new eigensolutions ϕkn(r) and
εkn then serve as the mean-field starting point for the next iteration and so on. Therefore,
in each QSGW iteration, there is an inner self-consistency cycle for the electron density.
The outer QSGW self-consistency cycle iteratively optimizes the mean-field starting point
defined by ΣH. The outer loop has reached self-consistency when the energies εkn do not
change anymore. One then runs a final GW calculation with the full non-Hermitian Σ in
Equation (2).

3. Computational Details

We adopt the experimental crystal structures taken from the Inorganic Crystal Struc-
ture Database (ICSD) [24,25]. The lattice constants are listed in Table 1. Self-consistent DFT
groundstate calculations are performed employing the all-electron full-potential linearized
augmented-plane-wave (FLAPW) code FLEUR [26]. Exchange-correlation effects are treated
within the local-density approximation (LDA) [27]. For the GW step (both one-shot and
QSGW), we employ the SPEX code [9], which utilizes the same LAPW basis as FLEUR. The
main computational parameters are presented in Table 2. The electronic self-energies are
calculated using carefully tested Brillouin zone sampling k-point grids. The grid density
is a very important parameter, in particular for metallic systems. To prevent core charge
leakage, the states specified in the row LOs are treated explicitly as valence states by
complementing the muffin-tin basis with auxiliary local orbitals. A total of 100 (occupied
and unoccupied) states are involved in summations over states for computing the polariz-
ability and the correlation self-energy. In the QSGW calculations, the self-energy Σ(k, ε)
is calculated on the basis of the 40 lowest eigenstates, giving rise to a 40×40 self-energy
matrix per k point and energy ε. On average, eight QSGW iterations are sufficient to reach
converged values for all materials. Table 2 lists the k-point grids used for each system. The
band structures presented in the next sections will contain the quasiparticle energies Ekn
obtained from Equation (2) for all grid k points that happen to lie on the high-symmetry
k-point path. In addition, we show the k-resolved spectral functions Equation (6). To
obtain smooth intensity plots not only along the energy axis but also along the k path, we
employ Wannier interpolation for all elements of the self-energy matrix in Equation (6),
which gives Σ(k, ε) everywhere in the Brillouin zone. The maximally localized Wannier
orbitals are constructed with the Wannier90 library [28] involving s and p orbitals for Li,
Be, Na, and Mg, and s, p, and d orbitals for K, Ca, Sr, Rb, and Cs.
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Table 1. Experimental crystal structure parameters taken from the inorganic crystal structure database
(ICSD) [24,25].

Li Be Na Mg K Ca Rb Sr Cs

ICSD-ID 44367 1425 196,972 76,748 44,670 44,348 44,869 76,162 42,662
type bcc hcp bcc hcp bcc fcc bcc fcc bcc
a (Å) 3.5100 2.2858 4.2250 3.2093 5.3280 5.5884 5.6970 6.0849 6.4650
c (Å) 3.5843 5.2103

Table 2. Computational parameters.

Li Be Na Mg K Ca Rb Sr Cs

RMT (a0) 2.29 2.00 2.40 2.29 2.50 2.40 2.50 2.40 2.40
Gmax(a−1

0 ) 4.70 5.00 4.70 5.00 4.50 5.00 4.50 5.00 4.50
k grid 16× 16× 16 12× 12× 10 12× 12× 12 12× 12× 10 12× 12× 12 12× 12× 12 10× 10× 10 12× 12× 12 14× 14× 14
LOs 2s 2p 2p 3s 3p 3s 3p 4s 4p 4s 4p 5s 5p

4. Results and Discussion

Valence bandwidths as computed with different computational approaches, as well as
available experimental estimates, are summarized in Table 3. Experimental bandwidths can
be found for seven of the nine simple metals investigated here. A comparison shows that
the DFT bandwidths of Li, Na, K, Ca, and Sr are strongly overestimated. The magnitude of
the overestimation is ≈0.6 eV. We find an opposite case in Be, where the LDA bandwidth is,
in fact, smaller than in the experiment. We refer here to the smaller of the two bandwidths
shown in Table 3. Be crystallizes in a hexagonally close-packed (hcp) lattice, similarly to Mg
bulk, which is the other exception. However, the experimental situation of Mg is unclear.
There are two photoemission studies [29,30] that report very different bandwidth values.
The older study reported bandwidths smaller than the LDA ones, in accordance with the
common trend mentioned above. The newer study, on the other hand, yielded bandwidth
values very close to the LDA prediction.

Table 3. Valence bandwidths (in eV) obtained from LDA, G0W0, QSGW, LQSGW, and eDMFT
compared to experimental reference values.

Li Be Na Mg K Ca Rb Sr Cs

LDA 3.46 11.02 4.26 3.29 6.87 1.62 1.28 2.16 3.98 1.99 3.68 2.14
LDA 1 3.46 11.03 4.28 3.30 6.89 1.65 1.31 2.15 3.98 1.99 3.70 2.15
G0W0 3.22 11.31 4.41 3.04 6.58 1.63 1.24 1.95 3.60 1.78 3.21 1.80
G0W0

1 3.39 11.37 4.48 3.15 6.66 1.68 1.29 2.00 3.79 1.86 3.39 2.00
QSGW 3.10 11.14 4.36 2.90 6.52 1.64 1.21 1.88 3.60 1.68 3.10 1.74
QSGW 2 3.00
LQSGW 3 3.16 2.07
eDMFT 1 2.60 10.12 4.41 2.84 6.18 1.85 0.82 1.42 3.24 1.81 3.05 1.70
exp 3.0 4 11.1 4.8 6 2.65 7 6.15 1.7 0.9 9 1.6 11 3.3 12

11.15 5 2.78 8 6.89 1.79 1.23 10 3.6 13 2.8 13

1 Ref. [17], 2 Ref. [19], 3 Ref. [20], 4 Ref. [5], 5 Ref. [31], 6 Ref. [32], 7 Ref. [33], 8 Ref. [34] 9 Ref. [29], 10 Ref. [30]
11 Ref. [35], 12 Ref. [36] 13 Ref. [37].

The overestimation of the bandwidths is usually attributed to the mean-field approx-
imation of Kohn–Sham DFT, which does not allow for the formation of dressed quasi-
particles. Dressed quasiparticles are expected to have a larger effective electron mass,
which should decrease the curvature of the bands and, thus, the bandwidths. The GW
approximation goes beyond the mean-field approximation and generally yields improved
band structures with respect to Kohn–Sham DFT. As a first step, we have applied the
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most popular one-shot G0W0 approach, employing the LDA eigenstates as a starting point.
In Table 3, we also list G0W0 values from Ref. [17]. Throughout, we find a reasonable
agreement between the G0W0 bandwidths, with the ones from Ref. [17] being consistently
larger.

The many-body renormalization by the GW self-energy leads to a significant reduction
in the bandwidths by ≈0.3 eV for all materials except Be (and Mg), amounting to about
50% of the overestimation by LDA. Thus, the renormalization corrects the bandwidth in
the right direction, although not sufficiently to reach experiment values. In the exceptional
case of Be, LDA underestimates the bandwidth, and, indeed, the G0W0 renormalization
correctly increases it.

The G0W0 self-energy correction is thus seen to improve the bandwidth in most
cases, but a difference to the experimental values remains. It is then plausible that a
repeated application of G0W0 may improve the results further. In fact, a self-consistent
calculation within the QSGW method decreases the bandwidths of Li, Na, K, Ca, Rb, Sr,
and Cs by ≈0.1 eV with respect to G0W0, further improving the agreement with available
experimental values. Likewise, the QSGW calculation yields improved bandwidths for
Be. The larger of the two bandwidths practically becomes identical to the experimental
value; however, the smaller one ends up at quite a large distance of about 0.4 eV from
the experiment. Our results are somewhat closer to the experiment than previous QSGW
studies [20,38]. Reference [19] reports a QSGW bandwidth of 3.00 eV for Na, very close
to ours. The bandwidths reported for Na (3.16 eV) and K (2.07 eV) in Ref. [20] deviate
more strongly from the values calculated by us; however, it should be pointed out that the
authors employed a variant of QSGW, which they called linearized QSGW (LQSGW) and
which relies on a linearization of the GW self-energy around the Fermi energy. This variant
is rather different from the traditional QSGW method we have used. Overall, our QSGW
calculations yield theoretical bandwidths close to the experimental values.

The QSGW results indicate that the missing self-consistency is mainly responsible for
the remaining overestimation of (most of) the bandwidths in the one-shot G0W0 approach.
On the other hand, the GW self-energy also misses short-range correlation effects in the form
of vertex corrections, which may also play a role in the description of simple metals. If this
were the case, the common understanding of simple metals as representing approximate
nearly-free electron gases with weak electronic correlation would have to be questioned.
The issue has been investigated in Ref. [17] by an application of the eDMFT method to
the simple metals. The eDMFT method includes short-range correlation effects in the
impurity site described by the continuous-time quantum Monte Carlo method. However,
since correlations are treated on a single impurity site, long-range correlations are not
accounted for. The self-energy is local and thus misses the k dependence in contrast to the
GW self-energy.

Table 3 lists the eDMFT bandwidths for comparison. They do represent an improve-
ment over LDA and—to a lesser degree—over G0W0, but they are in many cases surpris-
ingly close to QSGW, with a few exceptions: eDMFT underestimates the bandwidth of
lithium by 0.4 eV, while QSGW approaches it to within 0.1 eV. The larger of the two Be
bandwidths is predicted practically exactly by QSGW, while eDMFT shows a large under-
estimation of about 1.0 eV. The experimental bandwidth of K is about midway between the
ones from QSGW and eDMFT.

Bulk Ca and Mg are interesting cases. For both systems, there are two experimental
studies, one giving smaller and the other larger bandwidths. The former shows a better
agreement with eDMFT, and the latter is closer to our QSGW results. Thus, for these
systems, we cannot conclude which of the two approaches, eDMFT or QSGW, offers the
better theoretical description.

In the cases where the eDMFT and QSGW results are different, we cannot uniquely
attribute the difference to a specific property of any of the methods because the methods are
different in many ways. Both methods are self-consistent, but only one (QSGW) captures
the full k dependence of the self-energy, whereas the other (eDMFT) includes short-range
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correlations beyond GW. However, in most cases, the results of the two methods are rather
similar. The improvement brought about by both methods with respect to one-shot G0W0
can, therefore, be attributed to the self-consistency included in both approaches. Hence, the
present study confirms the common belief that the electrons in simple metals form nearly
free electron gases with weak correlations.

In Figure 1, we present the electronic band structures for the simple metals. LDA
bands are shown as solid black lines. The QSGW results are plotted in two ways. First,
the red points mark the real parts of the (complex-valued) quasiparticle energies Ekn
(Equation (2)) at k points that are members of the k-point set specified in Table 2. Second,
the QSGW spectral functions (Equation (6)) are plotted as intensity plots in blue. Wannier
interpolation is used to obtain smooth spectral functions in k. It is remarkable how well
Wannier interpolation works here, bearing in mind that the self-energy of Equation (3) is a
non-local function. Its matrix elements with respect to the localized Wannier functions do
not fall off exponentially with distance as in the case of the Kohn–Sham Hamiltonian. In
fact, if we look closely, we can make out some slight spurious oscillatory behavior caused
by the Wannier interpolation, for example, in the conduction bands of Rb around P-H-P.

Figure 1. Electronic band structures of the simple metals calculated with LDA (solid black line) and
QSGW (red stars). The Wannier-interpolated QSGW spectral functions are shown as intensity plots
in blue. The band broadening scales with the inverse excitation lifetime and vanishes at the Fermi
energy (0 eV). The orange crosses mark experimental binding energies. If two experimental values
are available (see Table 3), the turquoise cross shows the more recent measurement.
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The spectral functions exhibit a broadening of the quasiparticle bands, which stems
from the finite lifetime of the quasiparticle excitations. The broadening is stronger for bands
farther away from the Fermi energy. It vanishes at the Fermi energy because the scattering
phase space vanishes in this limit. The explicit quasiparticle energies (red points) trace the
quasiparticle bands and mostly fall in the middle of the broadened bands, although not
always because the quasiparticle peaks can have an asymmetric line shape.

Apart from the bandwidth reduction in the bcc and fcc simple metals, the LDA and
QSGW band structures on the whole are rather similar. Therefore, LDA yields a satisfactory
description of the electronic structure in simple metals for most purposes. Only in Sr and
Ca does the QSGW method have a stronger effect on the band dispersion around the Fermi
energy, which should also affect the form of the Fermi surface to some extent.

5. Conclusions

We have investigated the electronic structure of the simple (alkali and alkaline earth)
metals Li, Be, Na, Mg, K, Ca, Rb, Sr, and Cs with the one-shot G0W0 and the self-consistent
QSGW method. In particular, we focused on a well-known problem of Kohn–Sham DFT
(LDA), namely that the bandwidths of the simple metals are overestimated. Specifically,
we observe an overestimation for the bcc and fcc crystals (Li, Na, K, Ca, and Sr—no
experimental reference values available for Rb and Cs) but not for the hcp metals (Be
and Mg).

The origin for the overestimation of the bandwidths (e.g., in the case of Li, 3.46 eV
vs. 3.0 eV in the experiment) lies in the approximate mean-field treatment of exchange
and correlation in Kohn–Sham DFT. In fact, if we apply a one-shot G0W0 correction to
the self-consistent LDA solution, we find that the resulting quasiparticle bands correct
the bandwidths in the right direction (e.g., 3.22 eV for Li); however, a difference from the
experimental values remains.

The remaining difference may be due to the starting-point (LDA) dependence of G0W0.
Another possible reason might be the missing vertex corrections in the GW approximation,
i.e., its inadequacy in treating short-range (or strong) correlations. We have addressed the
first issue by applying the QSGW method, which, being self-consistent, is free of the starting-
point dependence. Indeed, our QSGW calculations bring the theoretical bandwidths even
closer to the experimental reference values (e.g., 3.10 eV for Li). From the results, we
conclude that the bandwidth overestimation of Kohn–Sham DFT is mainly due to long-
range correlations, which are well described by the GW self-energy approximation. In
other words, the simple metals can be regarded as nearly-free electron gases.

Of course, a small difference to the experiment still remains, which could be attributed
to missing vertex corrections in GW. However, it should also be pointed out that whenever
there are two experimental estimates (Be, Na, and Ca), the experimental values differ from
each other as much as the theoretical QSGW values from the experiment.

The two hcp metals (Be and Mg) are exceptions. Kohn–Sham DFT does not exhibit an
overestimation of the bandwidths. Interestingly, neither G0W0 nor QSGW have a strong
effect on the band structure in these cases. To be more precise, there are two experiments
for Mg giving rather different values of the bandwidth (we refer here to the largest band-
width). The older measurement would indicate a bandwidth overestimation by LDA
Kohn–Sham DFT, whereas the experimental bandwidth of the more recent measurement
is very close to the LDA prediction. The QSGW bandwidth lies just in-between the two
experimental estimates.

We also presented theoretical band structures calculated from LDA and QSGW. In
addition to the quasiparticle bands, we plotted the k-resolved QSGW spectral functions,
which not only show the quasiparticle band dispersions but also the lifetime band broad-
ening. Wannier interpolation was used to create smooth spectral functions along k. We
see that the lifetime broadening grows with the distance from the Fermi energy in both
directions. At the Fermi energy, the lifetime broadening vanishes, and the quasiparticle
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peaks become delta peaks. Higher-order correlation effects, such as plasmon satellite
features, are not observed in the considered energy interval.
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