000910294 001__ 910294
000910294 005__ 20241127124642.0
000910294 0247_ $$2doi$$a10.1039/D2RE00282E
000910294 0247_ $$2Handle$$a2128/32790
000910294 0247_ $$2WOS$$aWOS:000849927700001
000910294 037__ $$aFZJ-2022-03729
000910294 082__ $$a540
000910294 1001_ $$0P:(DE-Juel1)177000$$aHuang, Hong$$b0$$eCorresponding author
000910294 245__ $$aCFD modeling of a membrane reactor concept for integrated CO 2 capture and conversion
000910294 260__ $$aCambridge$$bRoyal Society of Chemistry$$c2022
000910294 3367_ $$2DRIVER$$aarticle
000910294 3367_ $$2DataCite$$aOutput Types/Journal article
000910294 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1669362366_20860
000910294 3367_ $$2BibTeX$$aARTICLE
000910294 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000910294 3367_ $$00$$2EndNote$$aJournal Article
000910294 520__ $$aCapturing CO2 and converting it into valuable products represents a future direction of carbon emissions reduction. The emergence of CO2-permeable membranes has opened up a broad range of new opportunities for efficient CO2 capture and conversion. In this context, this study develops a membrane reactor concept using a ceramic–carbonate dual-phase membrane for integrated CO2 capture and conversion. The membrane reactor has two concentric tubes, with the inner tube being for the flue gas to provide a CO2 source and the outer for the CO2 conversion. The catalyst is coated on the membrane surface instead of being packed in the reactor bed so that the permeated CO2 can be immediately converted, and the CO2 permeation flux can be significantly promoted in this manner. The performance of the developed membrane reactor concept is evaluated based on CFD simulations. The membrane reactor can achieve high CO2 capture rates of over 90% and conversions of up to 95% for the reaction of the reverse water gas shift. The CO productivity is limited by the membrane permeation flux and large reactor volume, and can be increased by compact designs that increase the ratio of the membrane area to the reactor volume, which are simple but effective approaches to increasing CO productivity, but maintain high CO2 capture rates and conversions. The developed membrane reactor concept can be readily applied to any other reaction for integrated CO2 capture and conversion.
000910294 536__ $$0G:(DE-HGF)POF4-1232$$a1232 - Power-based Fuels and Chemicals (POF4-123)$$cPOF4-123$$fPOF IV$$x0
000910294 536__ $$0G:(DE-HGF)POF4-1111$$a1111 - Effective System Transformation Pathways (POF4-111)$$cPOF4-111$$fPOF IV$$x1
000910294 536__ $$0G:(DE-HGF)POF4-1112$$a1112 - Societally Feasible Transformation Pathways (POF4-111)$$cPOF4-111$$fPOF IV$$x2
000910294 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000910294 7001_ $$0P:(DE-Juel1)207065$$aSamsun, Remzi Can$$b1$$ufzj
000910294 7001_ $$0P:(DE-Juel1)129902$$aPeters, Ralf$$b2
000910294 7001_ $$0P:(DE-Juel1)129928$$aStolten, Detlef$$b3$$ufzj
000910294 773__ $$0PERI:(DE-600)2842577-7$$a10.1039/D2RE00282E$$gp. 10.1039.D2RE00282E$$n12$$p2573-2581 $$tReaction chemistry & engineering$$v7$$x2058-9883$$y2022
000910294 8564_ $$uhttps://juser.fz-juelich.de/record/910294/files/CFD%20modeling%20of%20a%20membrane%20reactor%20concept.pdf$$yOpenAccess
000910294 8767_ $$d2022-12-27$$eHybrid-OA$$jPublish and Read$$zRSC
000910294 909CO $$ooai:juser.fz-juelich.de:910294$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire$$qOpenAPC
000910294 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177000$$aForschungszentrum Jülich$$b0$$kFZJ
000910294 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)177000$$aRWTH Aachen$$b0$$kRWTH
000910294 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)207065$$aForschungszentrum Jülich$$b1$$kFZJ
000910294 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129902$$aForschungszentrum Jülich$$b2$$kFZJ
000910294 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129928$$aForschungszentrum Jülich$$b3$$kFZJ
000910294 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129928$$aRWTH Aachen$$b3$$kRWTH
000910294 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1232$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
000910294 9131_ $$0G:(DE-HGF)POF4-111$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1111$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vEnergiesystemtransformation$$x1
000910294 9131_ $$0G:(DE-HGF)POF4-111$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1112$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vEnergiesystemtransformation$$x2
000910294 9141_ $$y2022
000910294 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000910294 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-04
000910294 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000910294 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-04
000910294 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2022-11-12$$wger
000910294 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bREACT CHEM ENG : 2021$$d2022-11-12
000910294 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-12
000910294 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-12
000910294 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-12
000910294 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-12
000910294 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-12
000910294 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-12
000910294 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bREACT CHEM ENG : 2021$$d2022-11-12
000910294 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000910294 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000910294 915pc $$0PC:(DE-HGF)0110$$2APC$$aTIB: Royal Society of Chemistry 2021
000910294 920__ $$lyes
000910294 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x0
000910294 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lTechnoökonomische Systemanalyse$$x1
000910294 9801_ $$aFullTexts
000910294 980__ $$ajournal
000910294 980__ $$aVDB
000910294 980__ $$aUNRESTRICTED
000910294 980__ $$aI:(DE-Juel1)IEK-14-20191129
000910294 980__ $$aI:(DE-Juel1)IEK-3-20101013
000910294 980__ $$aAPC
000910294 981__ $$aI:(DE-Juel1)IET-4-20191129
000910294 981__ $$aI:(DE-Juel1)ICE-2-20101013
000910294 981__ $$aI:(DE-Juel1)IET-4-20191129