000910297 001__ 910297
000910297 005__ 20240723202039.0
000910297 0247_ $$2doi$$a10.1021/acsnano.2c05045
000910297 0247_ $$2ISSN$$a1936-0851
000910297 0247_ $$2ISSN$$a1936-086X
000910297 0247_ $$2Handle$$a2128/32079
000910297 0247_ $$2pmid$$a36095839
000910297 0247_ $$2WOS$$aWOS:000855572900001
000910297 037__ $$aFZJ-2022-03732
000910297 082__ $$a540
000910297 1001_ $$0P:(DE-Juel1)167225$$aKutovyi, Yurii$$b0$$eCorresponding author
000910297 245__ $$aEfficient Single-Photon Sources Based on Chlorine-Doped ZnSe Nanopillars with Growth Controlled Emission Energy
000910297 260__ $$aWashington, DC$$bSoc.$$c2022
000910297 3367_ $$2DRIVER$$aarticle
000910297 3367_ $$2DataCite$$aOutput Types/Journal article
000910297 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1721730874_12675
000910297 3367_ $$2BibTeX$$aARTICLE
000910297 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000910297 3367_ $$00$$2EndNote$$aJournal Article
000910297 520__ $$aIsolated impurity states in epitaxially grown semiconductor systems possess important radiative features such as distinct wavelength emission with a very short radiative lifetime and low inhomogeneous broadening, which make them promising for the generation of indistinguishable single photons. In this study, we investigate chlorine-doped ZnSe/ZnMgSe quantum well (QW) nanopillar (NP) structures as a highly efficient solid-state single-photon source operating at cryogenic temperatures. We show that single photons are generated due to the radiative recombination of excitons bound to neutral Cl atoms in ZnSe QW and the energy of the emitted photon can be tuned from about 2.85 down to 2.82 eV with ZnSe well width increase from 2.7 to 4.7 nm. Following the developed advanced technology, we fabricate NPs with a diameter of about 250 nm using a combination of dry and wet-chemical etching of epitaxially grown ZnSe/ZnMgSe QW structures. The remaining resist mask serves as a spherical- or cylindrical-shaped solid immersion lens on top of NPs and leads to the emission intensity enhancement by up to an order of magnitude in comparison to the pillars without any lenses. NPs with spherical-shaped lenses show the highest emission intensity values. The clear photon-antibunching effect is confirmed by the measured value of the second-order correlation function at a zero time delay of 0.14. The developed single-photon sources are suitable for integration into scalable photonic circuits.
000910297 536__ $$0G:(DE-HGF)POF4-5224$$a5224 - Quantum Networking (POF4-522)$$cPOF4-522$$fPOF IV$$x0
000910297 536__ $$0G:(GEPRIS)337456818$$aDFG project 337456818 - Entwicklung von Spin-Qubit Bauelementen aus ZnSe/(Zn,Mg)Se Quantenstrukturen (337456818)$$c337456818$$x1
000910297 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000910297 7001_ $$0P:(DE-HGF)0$$aJansen, Marvin Marco$$b1
000910297 7001_ $$0P:(DE-Juel1)180155$$aQiao, Siqi$$b2$$ufzj
000910297 7001_ $$0P:(DE-Juel1)192146$$aFalter, Christine$$b3$$ufzj
000910297 7001_ $$0P:(DE-Juel1)161247$$avon den Driesch, Nils$$b4$$ufzj
000910297 7001_ $$0P:(DE-Juel1)178825$$aBrazda, Thorsten$$b5$$ufzj
000910297 7001_ $$0P:(DE-Juel1)125576$$aDemarina, Nataliya$$b6$$ufzj
000910297 7001_ $$0P:(DE-Juel1)128856$$aTrellenkamp, Stefan$$b7$$ufzj
000910297 7001_ $$0P:(DE-Juel1)161192$$aBennemann, Benjamin$$b8$$ufzj
000910297 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b9$$ufzj
000910297 7001_ $$0P:(DE-Juel1)166158$$aPawlis, Alexander$$b10$$eCorresponding author
000910297 773__ $$0PERI:(DE-600)2383064-5$$a10.1021/acsnano.2c05045$$gVol. 16, no. 9, p. 14582 - 14589$$n9$$p14582 - 14589$$tACS nano$$v16$$x1936-0851$$y2022
000910297 8564_ $$uhttps://juser.fz-juelich.de/record/910297/files/Preprint_1_Manuscript_Nanolens%20Single%20Photon%20Source.pdf$$yPublished on 2022-09-12. Available in OpenAccess from 2023-09-12.
000910297 8564_ $$uhttps://juser.fz-juelich.de/record/910297/files/acsnano.2c05045.pdf$$yRestricted
000910297 909CO $$ooai:juser.fz-juelich.de:910297$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000910297 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167225$$aForschungszentrum Jülich$$b0$$kFZJ
000910297 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b1$$kFZJ
000910297 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180155$$aForschungszentrum Jülich$$b2$$kFZJ
000910297 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)192146$$aForschungszentrum Jülich$$b3$$kFZJ
000910297 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161247$$aForschungszentrum Jülich$$b4$$kFZJ
000910297 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178825$$aForschungszentrum Jülich$$b5$$kFZJ
000910297 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125576$$aForschungszentrum Jülich$$b6$$kFZJ
000910297 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128856$$aForschungszentrum Jülich$$b7$$kFZJ
000910297 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161192$$aForschungszentrum Jülich$$b8$$kFZJ
000910297 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich$$b9$$kFZJ
000910297 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166158$$aForschungszentrum Jülich$$b10$$kFZJ
000910297 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5224$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
000910297 9141_ $$y2022
000910297 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000910297 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000910297 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000910297 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-18
000910297 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-18
000910297 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-18
000910297 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-18
000910297 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-18
000910297 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS NANO : 2021$$d2022-11-18
000910297 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bACS NANO : 2021$$d2022-11-18
000910297 920__ $$lyes
000910297 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000910297 9201_ $$0I:(DE-Juel1)HNF-20170116$$kHNF$$lHelmholtz - Nanofacility$$x1
000910297 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x2
000910297 9201_ $$0I:(DE-Juel1)PGI-10-20170113$$kPGI-10$$lJARA Institut Green IT$$x3
000910297 980__ $$ajournal
000910297 980__ $$aVDB
000910297 980__ $$aI:(DE-Juel1)PGI-9-20110106
000910297 980__ $$aI:(DE-Juel1)HNF-20170116
000910297 980__ $$aI:(DE-Juel1)PGI-2-20110106
000910297 980__ $$aI:(DE-Juel1)PGI-10-20170113
000910297 980__ $$aUNRESTRICTED
000910297 9801_ $$aFullTexts