
Chapter 1
Computing elastic interior transmission
eigenvalues

A. Kleefeld and M. Zimmermann

1.1 Introduction

Non-destructive testing is an important tool to check whether a given object is homo-
geneous or not without destroying it. Interior transmission eigenvalues (ITE) may
have the potential to serve as an indicator whether an object is homogeneous or not
due to a monotonicity result. If the object is not homogeneous, they might indicate
where and how large the inhomogeneity is. Hence, they can be seen as a “finger-
print” of a given object. Therefore, it is of great interest to numerically calculate
them for arbitrary domains to high accuracy.

They also play an important role in the theory for scattering problems. Precisely,
algorithms such as the (general) linear sampling method or the factorization method
to reconstruct the scattering object from the scattered field are not theoretically jus-
tified for such eigenvalues. Usually, time-harmonic acoustic, electromagnetic, or
elastic scattering problems are considered. Recent work is now focusing on the lat-
ter one as we do here, too.

Unfortunately, the resulting system of partial differential equations, containing
two Navier equations, are coupled by transmission conditions and lead therefore
to a non-self-adjoint and non-elliptic problem. However, one can cope with this
problem. Existing methods like the inside-outside duality method [Pe16] do not
report numerical results, the method of fundamental solutions only works well for
small perturbations of a circle [KlPi20], and variants of the finite element method
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only work well for polygonal domains [ChLiWa20, JiLiSu18, JiLiSu20, XiJi18,
XiJiGe18, XiJiZh21, YaHaBi20, YaEtAl20].

An alternative is to use the boundary element method which works very well
for domains with smooth boundaries to obtain numerical results to high accuracy.
However, it can only be used for constant coefficients and the fundamental solution
needs to be known. Luckily this is the case for the Navier equation, but one needs
to solve a non-linear eigenvalue problem which can be done with Beyn’s algorithm
[Be12] as done for the acoustic transmission problem [Kl13]. A first attempt has
been made in [We18], but certain integral operators were too complicated to be ap-
proximated. An improvement is given in [Zi21] fully avoiding this integral operator
by using a difference of Dirichlet-to-Neumann maps which has been successfully
applied to the acoustic transmission problem in [CaKr17]. However, the numerical
approximation of the singular integrals to high accuracy is complicated. Here, we
use an approach which fully avoids the numerical calculation of singular integrals.

The existence of a countable number of real ITEs is known [BeCaGu13], but the
existence of complex ITEs is still open, but with our approach we are able to give
numerical results indicating that they do exist.

The chapter is organized as follows: First, we present the elastic interior transmis-
sion problem. Next, we illustrate how to solve it with the boundary element method
using a difference of Dirichlet-to-Neumann maps. Then, the resulting integral equa-
tion is approximated by the boundary element collocation method and the emerging
non-linear eigenvalue problem is solved with Beyn’s algorithm. Numerical results
are given to show the correct approximations for two test cases. Finally, numerical
results are reported for a variety of domains and compared with existing results. A
short summary and an outlook are given at the end.

1.2 Elastic transmission eigenvalue problem

Let D ⊂ R2 be a bounded open domain that is simply connected. Its boundary ∂D
is given parametrically by p(θ) with θ ∈ [0,2π]. We assume that ∂D is a simple,
closed curve with finite length satisfying p(0)= p(2π), p∈C2([0,2π]), and p′(θ) 6=
0 for all θ ∈ [0,2π].

Time-harmonic elastic scattering with frequency ω can be described by the
Navier equation

µ ∆u+(λ +µ) grad div u+ω
2

ρ u = 0 in D⊂ R2 , (1.1)

where u(x) = (u1(x),u2(x))> is the displacement field at the point x = (x1,x2)
> ∈

R2. Here, the parameter ρ > 0 is the mass density of the medium and assumed to be
constant. The parameters λ and µ are the Lamé parameters and describe the elastic
material. They satisfy the conditions µ > 0 and 2µ +λ > 0 ([Mc00, p. 297 ff.]).

Assume now that D with mass density ρ1 is contained in a medium with mass
density ρ0 with ρ1 > ρ0. Is there an incident field satisfying the Navier equation that
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does not scatter? This leads to the elastic interior transmission problem: Find ω2

and a non-trivial solution (u,v) such that

µ ∆u+(λ +µ) grad div u+ω
2

ρ0 u = 0 in D , (1.2)

µ ∆v+(λ +µ) grad div v+ω
2

ρ1 v = 0 in D , (1.3)
u = v on ∂D , (1.4)

T(u) = T(v) on ∂D . (1.5)

is satisfied, where

T(f) = λ div(f)ν + 2 µ (ν> grad) f + µ div(Q f)Qν

with the normalized vector ν = (ν1,ν2)
> on ∂D pointing into the exterior of D and

the matrix

Q =

(
0 1
−1 0

)
.

Then, the parameter ω is an elastic interior transmission eigenvalue (EITE). The
existence of real EITEs is known [BeCaGu13], however the existence of complex
EITEs is still open.

We will use boundary integral equations to solve the problem at hand. The
matrix-valued fundamental solution is given by

Kω(x,y) =
i

4µ
H(1)

0 (ks‖x−y‖)I2

+
i

4ω2 gradx grad>x
[
H(1)

0 (ks‖x−y‖)−H(1)
0 (kp‖x−y‖)

]
∈ C2x2 ,

where x,y ∈ R2 with x 6= y, ‖·‖ denotes the Euclidean norm, and I2 is the 2× 2
identity matrix. The function H(1)

0 is the Hankel function of the first kind of order 0.
The parameters kp and ks are the wave numbers of the shear and the pressure wave,
respectively. They are given by

k2
s =

ω2

µ
and k2

p =
ω2

λ +2µ
.

The elastic single layer operator defined by

u(x) = (SLω g)(x) =
∫

∂D
Kω(x,y)g(y) ds(y) , x ∈ D

as well as the elastic double layer operator defined by

u(x) = (DLω h)(x) =
∫

∂D
[Ty (Kω(x,y))]>h(y) ds(y) , x ∈ D
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with unknown functions g, h solve the Navier equation (1.1). Note that the trac-
tion of a matrix is applied to each column. The unknown functions g, h are then
determined by letting the point x ∈ D approach the boundary and using the given
boundary condition incorporating the jump conditions of the elastic boundary layer
operators defined by

(Sω g)(x) =
∫

∂D
Kω(x,y)g(y) ds(y) , x ∈ ∂D ,(

D>ω g
)
(x) =

∫
∂D

Ty (Kω(x,y))g(y) ds(y) , x ∈ ∂D ,

(Dω h)(x) =
∫

∂D
[Ty (Kω(x,y))]>h(y) ds(y) , x ∈ ∂D .

The first operator is the elastic boundary single layer operator, the second operator
is the traction of the elastic boundary single layer operator, and the third operator
is the elastic boundary double layer operator. To solve (1.2)–(1.5), we use the idea
given in [CaKr17]. The following ansatz

u = SLω
√

ρ0g and v = SLω
√

ρ1h

solves (1.2) and (1.3) in D. The functions g and h are unknown. Letting the point
approach the boundary yields

u = Sω
√

ρ0g and v = Sω
√

ρ1h on ∂D .

Taking the traction along with the jump conditions yields

T(u) =
(

1
2

I+D>
ω
√

ρ0

)
g and T(v) =

(
1
2

I+D>
ω
√

ρ1

)
h on ∂D ,

where I denotes the identity operator. Combining the last two equations gives

T(u) =
(

1
2

I+D>
ω
√

ρ0

)
S−1

ω
√

ρ0
u and (1.6)

T(v) =
(

1
2

I+D>
ω
√

ρ1

)
S−1

ω
√

ρ1
v on ∂D . (1.7)

where we assume that ω2ρ0 and ω2ρ1 are not eigenvalues of the operator ∆ ∗ :=
µ ∆u+(λ +µ) grad div u with boundary condition u = 0. Because of the boundary
condition (1.4), we can replace v by u in (1.7). Next, we take the difference of (1.6)
and (1.7) and apply the boundary condition (1.5) yielding[(

1
2

I+D>
ω
√

ρ0

)
S−1

ω
√

ρ0
−
(

1
2

I+D>
ω
√

ρ1

)
S−1

ω
√

ρ1

]
︸ ︷︷ ︸

=:N(ω)

u = 0 on ∂D .
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Then, the solution of the non-linear eigenvalue problem N(ω)u = 0, u 6= 0 will be a
solution of (1.2)–(1.5). However, we will consider the transpose of this equation to
avoid the use of the traction of the elastic single layer operator. Hence, we consider[

S−1
ω
√

ρ0

(
1
2

I+Dω
√

ρ0

)
−S−1

ω
√

ρ1

(
1
2

I+Dω
√

ρ1

)]
︸ ︷︷ ︸

=:M(ω)

u = 0 on ∂D .

and need to solve the problem

M(ω)u = 0 , u 6= 0

assuming ω2ρ0 and ω2ρ1 are not eigenvalues of the operator ∆ ∗ with boundary
condition u = 0.

1.3 The discretization of the operators 1
2 I+Dω and Sω

In this section, we illustrate how to solve a given boundary integral equation with the
boundary element collocation method which we will also use later to approximate
the operators Sω and 1

2 I+Dω for a given ω . As an illustrative example, we want
to solve the problem ∆ ∗u+ω2u = 0 in R2\D with the boundary conditions u = f,
where f is a given function defined on the boundary. The frequency ω is given as
well. Using the double layer ansatz u = DLω h in R2\D together with the jump
condition yields the boundary integral equation of the second kind

1
2

h+Dω h = f . (1.8)

Now, we illustrate how to solve this equation numerically. First, we define for a
given even n the equidistant angles θ j = 2π( j− 1)/n, j = 1, . . . ,n. With this, we
define the nodes v j = p(θ j). Next, we define the line segments ∆i ⊂ ∂D, where
the i-th segment has the starting point v2i−1 and the end point v2i+1 and a point in
between v2i, i= 1, . . . ,n/2. Note that vn+1 = v1 since ∂D is closed. Hence, the given
boundary ∂D can be written as the union of all ∆i. Therefore, equation (1.8) can be
written as

1
2

h(x)+
n/2

∑
i=1

∫
∆i

[Ty (Kω(x,y))]>h(y)ds(y) = f(x) , x ∈ ∂D .

It can be shown that there exists a bijective map mi : σ = [0,1]→ ∆i for each i =
1, . . . ,n/2. Using a change of variables yields

1
2

h(x)+
n/2

∑
i=1

∫
σ

[
Tmi(s) (Kω(x,mi(s)))

]>h(mi(s))Ji(s)ds(s) = f(x) , x ∈ ∂D ,
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where Ji(s) = ‖∂smi(s)‖ is the Jacobian. The map mi is approximated by a quadratic
interpolation polynomial m̃i(s) = ∑

3
j=1 mi(q j)L j(s) with the Lagrange basis func-

tion L1(s) = (1− s)(1− 2s), L2(s) = 4s(1− s), and L3(s) = s(2s− 1) and q1 = 0,
q2 = 1/2, and q3 = 1. Note that mi(q j) selects the corresponding nodes v2i−1, v2i,
and v2i+1. We approximately obtain

1
2

h(x)+
n/2

∑
i=1

∫
σ

[
Tm̃i(s) (Kω(x,m̃i(s)))

]>h(m̃i(s))J̃i(s)ds(s)≈ f(x) , x ∈ ∂D ,

where J̃i(s) = ‖∂sm̃i(s)‖ is the Jacobian. We define for a given 0 < α < 1/2 the
collocation nodes ṽi,k = m̃i(q̃k) for i = 1, . . . ,n/2 and k = 1,2,3 with q̃1 = α , q̃2 =
1/2, and q̃3 = 1−α . We now approximate each component of the unknown function
h by a quadratic interpolation polynomial using the three nodes q̃k and the three
Lagrange basis functions

L̃1(s) =
1− s−α

1−2α

1−2s
1−2α

, L̃2(s) = 4
s−α

1−2α

1− s−α

1−2α
, L̃3(s) =

s−α

1−2α

2s−1
1−2α

.

Precisely, we use

h(m̃i(s))≈
3

∑
k=1

h(m̃i(q̃k))L̃k(s) =
3

∑
k=1

h(ṽi,k)L̃k(s)

and therefore, we obtain

1
2

h(x) +
n/2

∑
i=1

3

∑
k=1

∫
σ

[
Tm̃i(s) (Kω(x,m̃i(s)))

]> J̃i(s)L̃k(s)ds(s)h(ṽi,k)− f(x)

≈ r(x) , x ∈ ∂D ,

with the residual r(x). We force the residual to be zero at the collocation nodes ṽ j,`,
which leads to the linear system of size 3n×3n

1
2

h(ṽ j,`)+
n/2

∑
i=1

3

∑
k=1

ω A(i,k),( j,`)h(ṽi,k) = f(ṽ j,`) (1.9)

with

ω A(i,k),( j,`) =
∫

σ

[
Tm̃i(s)

(
Kω(ṽ j,`,m̃i(s))

)]> J̃i(s)L̃k(s)ds(s) ∈ C2×2

since the (i,k),( j, `)-entry is a 2× 2 matrix. All four elements of the 2× 2 matrix
are

ω A(1,1)
(i,k),( j,`) =

∫
σ

t(1,1)i, j,` (s)J̃i(s)L̃k(s)ds(s) , ω A(1,2)
(i,k),( j,`) =

∫
σ

t(1,2)i, j,` (s)J̃i(s)L̃k(s)ds(s)

ω A(2,1)
(i,k),( j,`) =

∫
σ

t(2,1)i, j,` (s)J̃i(s)L̃k(s)ds(s) , ω A(2,2)
(i,k),( j,`) =

∫
σ

t(2,2)i, j,` (s)J̃i(s)L̃k(s)ds(s)
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with

t(1,1)i, j,` (s) =
c1

‖di, j,`(s)‖

[
(−λ −2µ)ν1(y)d

(1)
i, j,`(s)−µν2(y)d

(2)
i, j,`(s)

]
+

c2

‖di, j,`(s)‖3

[
(−λ −2µ)ν1(y)

(
d(1)

i, j,`(s)
)3

− λν1(y)d
(1)
i, j,`(s)

(
d(2)

i, j,`(s)
)2
−2µν2(y)

(
d(1)

i, j,`(s)
)2

d(2)
i, j,`(s)

]
+

c3

‖di, j,`(s)‖4

[
(−λ −4µ)ν1(y)d

(1)
i, j,`(s)−µν2(y)d

(2)
i, j,`(s)

+ 4µ

(
ν1(y)

(
d(1)

i, j,`(s)
)3

+ν2(y)
(

d(1)
i, j,`(s)

)2
d(2)

i, j,`(s)
)]

t(1,2)i, j,` (s) =
c1

‖di, j,`(s)‖

[
−λν2(y)d

(1)
i, j,`(s)−µν1(y)d

(2)
i, j,`(s)

]
+

c2

‖di, j,`(s)‖3

[
(−λ −2µ)ν2(y)d

(1)
i, j,`(s)

(
d(2)

i, j,`(s)
)2

− λν2(y)
(

d(1)
i, j,`(s)

)3
−2µν1(y)

(
d(1)

i, j,`(s)
)2

d(2)
i, j,`(s)

]
+

c3

‖di, j,`(s)‖4

[
(−λ −2µ)ν2(y)d

(1)
i, j,`(s)−µν1(y)d

(2)
i, j,`(s)

+ 4µ

(
ν1(y)

(
d(1)

i, j,`(s)
)2

d(2)
i, j,`(s)+ν2(y)d

(1)
i, j,`(s)

(
d(2)

i, j,`(s)
)2
)]

t(2,1)i, j,` (s) =
c1

‖di, j,`(s)‖

[
−λν1(y)d

(2)
i, j,`(s)−µν2(y)d

(1)
i, j,`(s)

]
+

c2

‖di, j,`(s)‖3

[
(−λ −2µ)ν1(y)

(
d(1)

i, j,`(s)
)2

d(2)
i, j,`(s)

− λν1(y)
(

d(2)
i, j,`(s)

)3
−2µν2(y)d

(1)
i, j,`(s)

(
d(2)

i, j,`(s)
)2
]

+
c3

‖di, j,`(s)‖4

[
(−λ −2µ)ν1(y)d

(2)
i, j,`(s)−µν2(y)d

(1)
i, j,`(s)

+ 4µ

(
ν1(y)

(
d(1)

i, j,`(s)
)2

d(2)
i, j,`(s)+ν2(y)d

(1)
i, j,`(s)

(
d(2)

i, j,`(s)
)2
)]

t(2,2)i, j,` (s) =
c1

‖di, j,`(s)‖

[
(−λ −2µ)ν2(y)d

(2)
i, j,`(s)−µν1(y)d

(1)
i, j,`(s)

]
+

c2

‖di, j,`(s)‖3

[
(−λ −2µ)ν2(y)

(
d(2)

i, j,`(s)
)3

− λν2(y)
(

d(1)
i, j,`(s)

)2
d(2)

i, j,`(s)−2µν1(y)d
(1)
i, j,`(s)

(
d(2)

i, j,`(s)
)2
]

+
c3

‖di, j,`(s)‖4

[
(−λ −4µ)ν2(y)d

(2)
i, j,`(s)−µν1(y)d

(1)
i, j,`(s)
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+ 4µ

(
ν1(y)d

(1)
i, j,`(s)

(
d(2)

i, j,`(s)
)2

+ν2(y)
(

d(2)
i, j,`(s)

)3
)]

where

di, j,`(s) = ṽ j,`− m̃i(s)

c1 = − iks

4µ
H(1)

1 (ks ‖di, j,`(s)‖)

− i
4ω2 ‖di, j,`(s)‖

[
2

kpH(1)
1 (kp ‖di, j,`(s)‖)− ksH

(1)
1 (ks ‖di, j,`(s)‖)

‖di, j,`(s)‖

− k2
pH(1)

0 (kp ‖di, j,`(s)‖) + k2
s H(1)

0 (ks ‖di, j,`(s)‖)
]
,

c2 =
i

2ω2 ‖di, j,`(s)‖

[
k2

s H(1)
0 (ks ‖di, j,`(s)‖)− k2

pH(1)
0 (kp ‖di, j,`(s)‖)

+ 2
kpH(1)

1 (kp ‖di, j,`(s)‖)− ksH
(1)
1 (ks ‖di, j,`(s)‖)

‖di, j,`(s)‖

]

+
i

4ω2

[
k3

s H(1)
1 (ks ‖di, j,`(s)‖)− k3

pH(1)
1 (kp ‖di, j,`(s)‖)

]
,

c3 =
i

2ω2 ‖di, j,`(s)‖

[
ksH

(1)
1 (ks ‖di, j,`(s)‖)− kpH(1)

1 (kp ‖di, j,`(s)‖)
]

+
i

4ω2

[
k2

pH(1)
0 (kp ‖di, j,`(s)‖)− k2

s H(1)
0 (ks ‖di, j,`(s)‖)

]
The four integrals in A(i,k),( j,`) have to be evaluated numerically which is done

with an automatic integration routine using adaptive quadrature (refer to the soft-
ware package QUADPACK). However, when (i,k) = ( j, `) a singularity is present.
In this case, we use a singularity subtraction of the form

ω A(i,k),(i,k) =
∫

σ

[
Tm̃i(s)

(
Kω(ṽi,k,m̃i(s))−K0(ṽi,k,m̃i(s))

)]> J̃i(s)L̃k(s)ds(s)

+
∫

σ

[
Tm̃i(s)

(
K0(ṽi,k,m̃i(s))

)]> J̃i(s)L̃k(s)ds(s)︸ ︷︷ ︸
0A(i,k),(i,k)

=: intsmooth
i,k + intsingular

i,k .

The integrand of intsmooth
i,k is smooth and converges to the 2× 2 zero matrix, say

Z2. Therefore, we directly set intsmooth
i,k equal to Z2. Next, we consider intsingular

i,k .
We use the fact that for φ = 1 we have D0φ(x) = − 1

2 I2 for all x ∈ ∂D. Hence, we
approximately have
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n/2

∑
i=1

3

∑
k=1

0A(i,k),( j,`) ≈−
1
2

I2 ∀( j, `) (1.10)

and therefore we can find the diagonal matrix entry 0A(i,k),(i,k) = intsingular
i,k by en-

forcing (1.10) to be exact. Hence, we never have to integrate over a singularity, but
we need to additionally compute the 2×2 matrices 0A(i,k),( j,`) for all (i,k) 6= ( j, `).
For a given f and ω , the linear system (1.9) is solved directly for h. Likewise, we
can discretize u(x) = DLω h(x) to compute the solution at any x ∈R2\D. Precisely,
we have

u(x) = DLω h(x)≈
n/2

∑
i=1

3

∑
k=1

ω Ã(i,k),xh(ṽi,k) =: un(x)

with
Ã(i,k),x =

∫
σ

[
Tm̃i(s) (Kω(x,m̃i(s)))

]> J̃i(s)L̃k(s)ds(s) ∈ C2×2 .

Example 1. Consider the solution of the Navier equation ∆ ∗u+ω2u = 0 in R2\D
with u = f on ∂Ω , where the boundary of the domain Ω is given parametrically by
p(θ) = (2cos(θ),sin(θ)) (an ellipse). The Lamé parameters are chosen to be λ = 1
and µ = 1. The frequency ω is given by 1 and i and we used α = (1−

√
3/5)/2. The

first column of the fundamental solution with y = (0,0)> satisfies ∆ ∗u+ω2u = 0
and is used as a reference solution. The boundary function f is chosen to be the first
column of the fundamental solution restricted to the given boundary. We compute
the solution at x = (3,3)> using the double layer ansatz u(x) = DLω h(x) and test
therefore the operator 1

2 I+Dω since we need to compute

1
2

h+Dω h = f

in order to obtain h. In Table 1.1, we list the absolute error e(ω)
n = ‖u− un‖ for

various choices of n as well as the estimated order of convergence EOC(ω) =

log
(

e(ω)
n /e(ω)

2n

)
/ log(2). As we can see in Table 1.1, we obtain a convergence order

n e(1)n EOC(1) e(i)n EOC(i)

10 1.31039−4 7.74688−6
20 2.93242−5 2.16 2.06750−6 1.91
40 2.00761−6 3.87 5.85069−8 5.14
80 2.60633−7 2.95 7.61938−9 2.94

Table 1.1 Numerical results to test the discretization of the double layer operator for ω = 1 and
ω = i.

of at least two.

In a similar fashion, we can solve the problem ∆ ∗u+ω2u = 0 in R2\D with
the boundary conditions u = f, where f is a given function defined on the boundary.
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The frequency ω is given as well. Using the single layer ansatz u = SLω g in R2\D
yields the boundary integral equation of the first kind

Sω g = f . (1.11)

Using the same strategy as explained before yields the linear system of size 3n×3n

n/2

∑
i=1

3

∑
k=1

ω B(i,k),( j,`)g(ṽi,k) = f(ṽ j,`) (1.12)

with
ω B(i,k),( j,`) =

∫
σ

Kω(ṽ j,`,m̃i(s))J̃i(s)L̃k(s)ds(s) ∈ C2×2

since the (i,k),( j, `)-entry is a 2× 2 matrix. All four elements of the 2× 2 matrix
are

ω B(1,1)
(i,k),( j,`) =

∫
σ

u(1,1)i, j,` (s)J̃i(s)L̃k(s)ds(s) , ω B(1,2)
(i,k),( j,`) =

∫
σ

u(1,2)i, j,` (s)J̃i(s)L̃k(s)ds(s)

ω B(2,1)
(i,k),( j,`) =

∫
σ

u(2,1)i, j,` (s)J̃i(s)L̃k(s)ds(s) , ω B(2,2)
(i,k),( j,`) =

∫
σ

u(2,2)i, j,` (s)J̃i(s)L̃k(s)ds(s)

with

u(1,1)i, j,` (s) =
i

4µ
H(1)

0 (ks ‖di, j,`(s)‖)

+
i

4ω2
kpH(1)

1 (kp ‖di, j,`(s)‖)− ksH
(1)
1 (ks ‖di, j,`(s)‖)

‖di, j,`(s)‖

+
(d(1)

i, j,`(s))
2

‖di, j,`(s)‖2

(
i

4ω2

[
k2

pH(1)
0 (kp ‖di, j,`(s)‖)− k2

s H(1)
0 (ks ‖di, j,`(s)‖)

]
+

i
2ω2 ‖di, j,`(s)‖

[
ksH

(1)
1 (ks ‖di, j,`(s)‖)− kpH(1)

1 (kp ‖di, j,`(s)‖)
])

u(2,1)i, j,` (s) =
d(1)

i, j,`(s)d
(2)
i, j,`(s)

‖di, j,`(s)‖2

(
i

4ω2

[
k2

pH(1)
0 (kp ‖di, j,`(s)‖)

− k2
s H(1)

0 (ks ‖di, j,`(s)‖)
]
+

i
2ω2 ‖di, j,`(s)‖

[
ksH

(1)
1 (ks ‖di, j,`(s)‖)

− kpH(1)
1 (kp ‖di, j,`(s)‖)

])
u(1,2)i, j,` (s) =

d(1)
i, j,`(s)d

(2)
i, j,`(s)

‖di, j,`(s)‖2

(
i

4ω2

[
k2

pH(1)
0 (kp ‖di, j,`(s)‖)

− k2
s H(1)

0 (ks ‖di, j,`(s)‖)
]
+

i
2ω2 ‖di, j,`(s)‖

[
ksH

(1)
1 (ks ‖di, j,`(s)‖)

− kpH(1)
1 (kp ‖di, j,`(s)‖)

])
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u(2,2)i, j,` (s) =
i

4µ
H(1)

0 (ks ‖di, j,`(s)‖)

+
i

4ω2
kpH(1)

1 (kp ‖di, j,`(s)‖)− ksH
(1)
1 (ks ‖di, j,`(s)‖)

‖di, j,`(s)‖

+
(d(2)

i, j,`(s))
2

‖di, j,`(s)‖2

(
i

4ω2

[
k2

pH(1)
0 (kp ‖di, j,`(s)‖)− k2

s H(1)
0 (ks ‖di, j,`(s)‖)

]
+

i
2ω2 ‖di, j,`(s)‖

[
ksH

(1)
1 (ks ‖di, j,`(s)‖)− kpH(1)

1 (kp ‖di, j,`(s)‖)
])

For a given function f and frequency ω , the linear system (1.12) is solved directly
for g. We discretize u(x) = SLω g(x) to compute the solution at any x ∈ R2\D.
Precisely, we have

u(x) = SLω g(x)≈
n/2

∑
i=1

3

∑
k=1

ω B̃(i,k),xg(ṽi,k) =: un(x)

with
B̃(i,k),x =

∫
σ

Kω(x,m̃i(s))J̃i(s)L̃k(s)ds(s) ∈ C2×2 .

Example 2. Consider again the solution of the Navier equation ∆ ∗u+ω2u = 0 in
R2\D with u = f on ∂Ω , where the boundary of the domain Ω is given paramet-
rically by p(θ) = (2cos(θ),sin(θ)) (an ellipse). We use the same parameters as
before (refer to Example 1). We again compute the solution at x = (3,3)>, but with
a single layer ansatz u(x) = SLω g(x) and test therefore the operator Sω since we
need to compute

Sω g = f

to obtain g. In Table 1.2, we list the absolute error e(ω)
n for various choices of n

including the estimated order of convergence EOC(ω). As we can see in Table 1.2,

n e(1)n EOC(1) e(i)n EOC(i)

10 1.47550−4 1.31082−5
20 1.35472−5 3.45 1.39689−6 3.23
40 2.15646−7 5.97 2.03561−8 6.10
80 9.55428−8 1.17 9.41391−9 1.11

Table 1.2 Numerical results to test the discretization of the single layer operator for ω = 1 and
ω = i.

we obtain a convergence order of at least two.
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1.4 Solving the non-linear eigenvalue problem

Beyn’s algorithm [Be12] is used to solve the non-linear eigenvalue problem of the
form

M(ω)u = 0 ,u 6= 0

with M(ω)∈Cm×m. Therefore, the user specifies a smooth contour γ in the complex
plane and integrates over the resolvent. We will use a circle with radius R centered
at c as the contour γ given parametrically by φ(t) = c+Ret i and φ ′(t) = Riet i. With
Keldysh’s theorem one can reduce the non-linear eigenvalue problem to a linear
eigenvalue problem of size n(γ) which is much smaller than m. To be more specific,
one has to compute the two integrals

A0 =
1

2π i

∫
γ

M−1(ω)V̂ds(ω) , A1 =
1

2π i

∫
γ

ωM−1(ω)V̂ds(ω) ,

where V̂ ∈ Cm×` with m�` ≥ n(γ) is a random matrix. The parameter ` has to be
chosen such that is is greater than the number of possible eigenvalues n(γ) (includ-
ing multiplicities), but as small as possible to reduce computational work. Of course,
the two integrals have to be computed numerically. We will use the trapezoidal rule
yielding

A0,N =
1

iN

N−1

∑
j=0

M−1(φ(t j))V̂φ
′(t j) , A1,N =

1
iN

N−1

∑
j=0

φ(t j)M−1(φ(t j))V̂φ
′(t j) .

The parameter N is specified by the user and with this we define the equidis-
tant nodes t j = 2π j/N, j = 0, . . . ,N. The parameter N can be chosen small since
the trapezoidal rule converges exponentially. Next, a (reduced) singular value de-
composition of A0,N = VΣWH is computed, where V ∈ Cm×`, Σ ∈ C`×`, and
W ∈ C`×`. Then, a rank test on the diagonal matrix Σ = diag(σ1,σ2, . . . ,σ`) is
performed which indicates how many eigenvalues including multiplicities are con-
tained within the chosen contour γ . We will use ε = 10−2 and compute n(γ) such
that σ1 ≥ . . . ≥ σn(γ) > ε > σn(γ)+1 ≥ . . . ≥ σ` is satisfied. With this, we con-
struct the three matrices V0 = (Vi j)1≤i≤m,1≤ j≤n(γ), Σ0 = (Σi j)1≤i≤n(γ),1≤ j≤n(γ), and
W0 =(Wi j)1≤i≤`,1≤ j≤n(γ)). Finally, we compute n(γ) eigenvalues, say ωi, and eigen-
vectors si of the new matrix B = VH

0 A1,NW0Σ
−1
0 ∈ Cn(γ)×n(γ). The i-th non-linear

eigenvector ui is given by V0si.

1.5 Numerical results

In this section, we present numerical results for the computation of elastic interior
transmission eigenvalues for a variety of two-dimensional domains. Let θ ∈ [0,2π].
The first domain D1 under consideration is a disk with radius r1 = 1/2 having
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the parametrization p1(θ) := (r1 cos(θ),r1 sin(θ))>. The second domain D2 is
an ellipse with semi-axis a2 = 1 and b2 = 1/2. Its parametrization is given by
p2(θ) := (a2 cos(θ),b2 sin(θ))>. The third parametrization is given by p3(θ) :=
(3cos(θ)/4+3cos(2t)/10,sin(θ))> and represents the ‘deformed ellipse’ (kite)
domain D3. The unit square D4 is the fourth domain under consideration.

For comparison, we will use the parameters ρ1 = 1, ρ2 = 4 and the Lamé param-
eters µ = 1/16 and λ = 1/4 which have been used in a variety of papers before.
Further, we use N = 24, `= 20, ε = 10−2, and R = 1/4 within the Beyn algorithm.
The parameter c and the number of faces n f depend on the considered domain and
are listed separately. The parameter α is chosen to be (1−

√
3/5)/2 for all the

following numerical results.
At first, we consider D1 and compute the first seven real elastic interior transmis-

sion eigenvalues using n f = 40 and c = 1.5 for ω1, ω2, and ω3 and n f = 40 and c =
2.1 for ω4, ω5, ω6, and ω7 with the boundary element method (BEM). We compare
our results with the method of fundamental solutions (MFS) [KlPi20] since those
results are accurate up to ten digits accuracy for D1. Additionally, we compare our
results with different finite element methods (FEM) [YaEtAl20, XiJi18, JiLiSu18].
Note that the second, fourth, and sixth eigenvalue have multiplicity two. In [XiJi18]
the first two eigenvalues are listed and in [YaEtAl20, JiLiSu18] the first six eigen-
values are computed. In Table 1.3, we list the first seven eigenvalues and highlight
the correct number of digits in bold. The eigenvalues obtained with the MFS are
used for comparison. All reported digits are correct and therefore not highlighted in
bold.

ITE BEM FEM [YaEtAl20] FEM [XiJi18] FEM [JiLiSu18] MFS [KlPi20]
ω1 1.451 304 1.452 482 1.451 948 1.455 078 1.451 304 028
ω2 1.704 645 1.706 023 1.705 370 1.709 214 1.704 638 247
ω3 1.704 645 1.706 023 1.709 214
ω4 1.984 551 1.986 143 1.989 630 1.984 530 256
ω5 1.984 552 1.986 146 1.989 630
ω6 2.269 152 2.270 963 2.274 992 2.269 112 085
ω7 2.269 152

Table 1.3 Numerical results for the first seven real elastic interior transmission eigenvalues for a
disk with radius 1/2.

As we can see, our numerical results are accurate up to five digits accuracy using
only n f = 40 faces. The first eigenvalue is accurate up to six digits. The numerical
results for the FEM methods are only accurate up to two to three digits with the
exception of the first eigenvalue which is accurate up to four digits. The used mesh
size in [XiJi18] is h = 1/160, in [JiLiSu18] is h = 1/80, and in [YaEtAl20] is h ≈
0.03125. Note that in the preprint [XiJiGe18] h = 0.0125 was used and yields 1.456
for the first eigenvalue. In sum, our numerical results are much more accurate than
the ones given by FEM. However, the best results are given by the MFS.

Next, we consider the ellipse D2. We use n f = 40 and c = 1.4 and compare our
numerical results given in Table 1.4 with the MFS for the first four real interior trans-
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mission eigenvalues. The numerical results of the MFS are accurate with ten digits
and serve again as reference values. They are not highlighted in bold. Unfortunately,
no numerical results are available for the FEM method.

ITE BEM MFS [KlPi20]
ω1 1.296 681 1.296 728 137
ω2 1.302 814 1.302 785 814
ω3 1.540 775 1.540 896 035
ω4 1.5651 73 1.565 151 107

Table 1.4 Numerical results for the first four real elastic interior transmission eigenvalues for an
ellipse with semi-axis 1 and 1/2.

As we can see, we are able to obtain four digits accuracy. The fourth eigenvalue
is accurate up to five digits accuracy. All eigenvalues are simple. Hence, the BEM
method is a good alternative for the MFS and offers good flexibility in terms of
using general domains. This is shown with the next domain D3.

The numerical results for the first four elastic interior transmission eigenvalues
for the kite are given in Table 1.5 using n f = 40 faces and c= 0.9 for ω1 and n f = 40
and c = 1.1 for ω2, ω3, and ω4 along with the numerical results obtained with the
MFS. The eigenvalues obtained with the MFS are correct to four digits accuracy and
not highlighted in bold.

ITE BEM MFS [KlPi20]
ω1 0.947 495 0.947
ω2 1.047 398 1.047
ω3 1.111 190 1.111
ω4 1.235 261 1.235

Table 1.5 Numerical results for the first four real elastic interior transmission eigenvalues for the
kite domain.

We obtain at least four digits accuracy with the BEM for ω1, ω2, ω3, and ω4.
For ω2 we obtain five digits accuracy. Hence, the results are equal or better than the
ones of the MFS. Therefore, the BEM method offers the flexibility to use it for more
general domains with a smooth boundary. Unfortunately, no numerical results are
reported with the FEM for such domains.

Of course, the FEM is much better suited for polygonal domains such as the unit
square. We finally compare our method with the FEM (the accuracy is not known,
but at least five digits) and the MFS (five digits accuracy). We use n f = 46 and
c = 1.5 for the first eigenvalue and n f = 46 and c = 1.8 for the other eigenvalues to
obtain the numerical results that are given in Table 1.6.

Our numerical results are better than the ones given in [XiJi18] (h= 0.00625) and
[XiJiGe18] (h= 0.0125). Moreover, are the results comparable with the MFS. How-
ever, the numerical results reported in [YaEtAl20] (h ≈ 0.03125) and [JiLiSu18]
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ITE BEM FEM [YaEtAl20] FEM [JiLiSu18] FEM [XiJiGe18] FEM [XiJi18] MFS [KlPi20]
ω1 1.393 892 1.393 877 1.393 874 1.393 879 1.394 419 1.393 8
ω2 1.618 264 1.618 299 1.618 296 1.619 008 1.618 2
ω3 1.618 389 1.618 299 1.618 296
ω4 1.802 089 1.802 042 1.802 032 1.802 0
ω5 1.936 187 1.936 138 1.936 134 1.936 2

Table 1.6 Numerical results for the first five real elastic interior transmission eigenvalues for the
unit square.

(h ≈ 0.025) are better as expected. The same is true for FEM [YaHaBi20] using
m = 26.

Finally, note that we can easily compute complex-valued elastic interior trans-
mission eigenvalues by selecting a corresponding contour in the complex plane, al-
though the existence of them is still an open question. Using c= 2+ i/2 and n f = 40
for D1 and n f = 46 for D4 yields the results reported in Table 1.7.

Domain BEM
Circle 1.987189+0.283146i

Unit square 1.865629+0.291766i

Table 1.7 Numerical results for one complex-valued elastic interior transmission eigenvalues for
the circle with radius 1/2 and the unit square.

1.6 Summary and outlook

We presented an algorithm to compute interior elastic transmission eigenvalues in
two dimensions with the boundary element collocation method in combination with
a non-linear eigenvalue solver. We are able to obtain good results for a circle and an
ellipse which outperforms various finite elements methods. However, the method of
fundamental solutions beats the boundary element method in accuracy. The situation
is different for polygonal domains such as a square. The best method in accuracy is
the finite element method. However, for various domains with a smooth boundary,
the boundary element method is the one for which the best accuracy can be obtained.

The python program is available at

https://github.com/kleefeld80/elastic-ite-bem

and has been developed and tested under Windows 10 with python version 3.8.
All numerical results reported within this chapter have been obtained with python
version 3.9.4 under Windows 10 and can be reproduced using the runall.py script.

No numerical results are reported for the three-dimensional case. Hence, the next
step would be to use the presented algorithm to numerically calculate interior elastic
transmission eigenvalues in three dimensions with the boundary element method in
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a similar fashion as presented in [Kl13] for interior acoustic transmission eigenval-
ues.
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