001     910302
005     20230227201806.0
024 7 _ |a 10.1029/2021WR030110
|2 doi
024 7 _ |a 0043-1397
|2 ISSN
024 7 _ |a 1944-7973
|2 ISSN
024 7 _ |a 2128/32228
|2 Handle
024 7 _ |a WOS:000796966400001
|2 WOS
037 _ _ |a FZJ-2022-03737
082 _ _ |a 550
100 1 _ |a Haruzi, P.
|0 P:(DE-Juel1)173026
|b 0
|e Corresponding author
245 _ _ |a Detection of Tracer Plumes Using Full‐Waveform Inversion of Time‐Lapse Ground Penetrating Radar Data: A Numerical Study in a High‐Resolution Aquifer Model
260 _ _ |a [New York]
|c 2022
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1666963532_10383
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Imaging subsurface small-scale features and monitoring transport of tracer plumes at a fine resolution is of interest to characterize transport processes in aquifers. Full-waveform inversion (FWI) of crosshole ground penetrating radar (GPR) measurements enables aquifer characterization at decimeter-scale resolution. The method produces images of both relative dielectric permittivity (εr) and bulk electrical conductivity (σb) that can be related to hydraulic aquifer properties and tracer distributions. To test the potential of time-lapse GPR FWI for imaging tracer plumes, we conducted a numerical tracer experiment by injecting saline water, desalinated water, and ethanol in a heterogeneous aquifer. The saline and desalinated tracers only changed σb, whereas ethanol changed both εr and σb. Tracer concentrations were retrieved from the inverted εr and σb models using information about petrophysical parameters. GPR FWI εr and σb tracer images could recover preferential paths of ∼0.2 m width, while the derived σb structures are smoother. FWI of 50 time-lapse data sets demonstrated the potential of the FWI to derive spatially resolved breakthrough curves of the saline and ethanol tracer in the image plane between the boreholes. Thus, high-resolution imaging with GPR FWI of tracers that produce a high permittivity contrast against the background has a great potential for characterization of heterogeneous transport in aquifers.
536 _ _ |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)
|0 G:(DE-HGF)POF4-2173
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Schmäck, J.
|0 P:(DE-Juel1)169434
|b 1
700 1 _ |a Zhou, Z.
|0 P:(DE-Juel1)169315
|b 2
700 1 _ |a van der Kruk, J.
|0 P:(DE-Juel1)129561
|b 3
700 1 _ |a Vereecken, H.
|0 P:(DE-Juel1)129549
|b 4
700 1 _ |a Vanderborght, J.
|0 P:(DE-Juel1)129548
|b 5
700 1 _ |a Klotzsche, A.
|0 P:(DE-Juel1)129483
|b 6
773 _ _ |a 10.1029/2021WR030110
|g Vol. 58, no. 5
|0 PERI:(DE-600)2029553-4
|n 5
|p 23
|t Water resources research
|v 58
|y 2022
|x 0043-1397
856 4 _ |u https://juser.fz-juelich.de/record/910302/files/Water%20Resources%20Research%20-%202022%20-%20Haruzi%20-%20Detection%20of%20Tracer%20Plumes%20Using%20Full%E2%80%90Waveform%20Inversion%20of%20Time%E2%80%90Lapse%20Ground.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:910302
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)173026
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)169434
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129561
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129549
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129548
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129483
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2173
|x 0
914 1 _ |y 2022
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-01-26
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-26
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-26
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b WATER RESOUR RES : 2021
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2022-11-29
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b WATER RESOUR RES : 2021
|d 2022-11-29
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DEAL: Wiley 2019
|2 APC
|0 PC:(DE-HGF)0120
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21