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Abstract: Hydrological processes are known as major driving forces in structuring wetland plant
communities, but the specific relationships are not always well understood. The recent dry conditions
of Poyang Lake (i.e., the largest freshwater lake in China) are having a profound impact on its wetland
vegetation, leading to the degradation of the entire wetland ecosystem. We developed an integrated
framework to quantitatively investigate the relationship between the spatial distribution of major
wetland herbaceous communities and the hydrological regimes of Poyang Lake. First, the wetland
herbaceous community classification was built using a support-vector machine and simultaneous
parameter optimization, achieving an overall accuracy of over 98%. Secondly, based on the inundation
conditions since 2000, four hydrological drivers of the spatial distribution of these communities were
evaluated by canonical correspondence analysis. Finally, the hydrological niches of the communities
were quantified by Gaussian regression and quantile methods. The results show that there were
significant interspecific differences in terms of the hydrological niche. For example, Carex cinerascens
Ass was the most adaptable to inundation, while Triarrhena lutarioriparia + Phragmites australis Ass
was the least. Our integrated analytical framework can contribute to hydrological management to
better maintain the wetland plant community structure in the Poyang Lake area.

Keywords: wetland vegetation mapping; Sentinel-2; support-vector machines (SVMs); inundation;
canonical correspondence analysis; hydrologic niche

1. Introduction

The water level is essential in determining wetland plants’ ecological characteristics,
biomass accumulation, and reproductive patterns [1,2]. Fluctuations in wetland water levels
impact plant colonization and expansion, primary productivity, community composition,
species diversity, and community succession, and they play an essential role in wetlands’
development, maintenance, and extinction [3]. There are many similar lakes around the
world that face the problem of fluctuating wetland water levels affecting plant communities.
For example, droughts affect the coastal wetland of Lake Huron, with larger impacts on
the vegetation [4]. Similarly, the vegetation distribution and the structuring of wetland
environments in the Everglades National Park, near the Gulf of Mexico, is also modified by
hydrological dynamics caused by human interaction and climate change [5]. As a dynamic
wetland system, Poyang Lake in China provides critical ecological functions for water
circulation and biodiversity conservation. It is known for its dynamics between floods and
low water levels, creating a unique landscape where high water levels exhibit a lake and
low water levels exhibit a river [6]. Large areas of lakeshores are exposed during the dry
season, providing favorable conditions for the growth of wetland vegetation communities.
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This wetland ecosystem, composed of grass flats, mudflats, and waterbodies, provides
habitats and foraging places for fish and winter migratory birds [7]. Unfortunately, the
low water levels and dry periods are prolonged in Poyang Lake due to intensive human
activities (e.g., discharge regulation at the Three Gorges Dam, sand dredging, water use
for agriculture) and changing climate, which have led to a significant alteration in the
dominant species of the wetland vegetation community [8–11]. Studies have shown that
the continuously low water level of the Poyang Lake in recent years (especially after 2000)
has caused a downward shift in the elevation of vegetated areas [8,9,12]. As a result, the
aquatic vegetation has been declining, and a large area of mudflats has been invaded by
terrestrial vegetation [9,11,13].

The various vegetation communities are critical for wintering waterbirds to choose a
well-suited foraging and nesting environment [7,14,15]. Poyang Lake’s wetland vegetation
is dominated by grass and aquatic vegetation, composed of various wet plants, marsh
plants, and aquatic plants [16]. Affected by many factors (such as lake microtopography,
water regime, groundwater depth, soil structure, and other factors)—especially the water
level changes—the distribution of vegetation along the inundation gradient shows a com-
munity mosaic and a community complex structure [17]. For example, in meadows, the
communities often appear in patches [18]. Therefore, it is challenging for researchers to map
a detailed vegetation community distribution. Fortunately, remote sensing techniques can
provide a cost-effective means of monitoring and capturing empirical relationships between
in situ data and satellite data [19–21]. Although remote sensing provides efficient tools
for wetland mapping and monitoring, there are various technical limitations in wetland
classification [20,22]. For instance, conventional supervised classifiers might be inefficient
for identifying wetland plant communities [23,24]. Moreover, wetland plant communities
with similar spectral and backscattering behavior in optical and synthetic aperture radar
(SAR) data may confuse classification [24]. Additionally, advanced techniques such as
high-resolution satellite images and near-ground remote sensing are widely used in plant
community ecology studies at different scales, and the results indicate that high spatial
resolution aids in mapping those heterogeneous wetlands at the scale of herbaceous plant
communities [25–27]. However, most studies are based on coarse-resolution data (i.e., more
than 10 m × 10 m) to encompass such a diverse vegetation community in the dynamic
wetlands [13,28,29]. In this case, multiple vegetation community groups can be found
in one pixel [5]. Hence, delineating the precise boundary of each vegetation community
surrounding the point using fine-spatial-resolution imagery is challenging.

On the other hand, collecting reference samples is a prerequisite for accurately su-
pervised classifications. Insufficient and unrepresentative reference samples have been
recognized as the primary sources of error in the supervised classifications [30–32]. Many
studies have found that wetland classifications benefit from dense field data—particularly
wetland mapping [33,34]. However, input variable selection is critical in developing super-
vised classification models, which should be relevant and non-redundant to avoid adding
noise to the models and increasing model complexity [35]. On the other hand, omitting
relevant input variables can make the models less accurate and unable to fully describe the
system behavior [36]. Therefore, input variables are essential for the model’s computation
time and classification accuracy in classifying complex wetland herbaceous communities.

Hydrological regimes create niches for colonizing different types of vegetation [37].
The dynamic relationship between the hydrological regime and the vegetation can be
complex, experiencing periodic flooding that exhibits changes in the spatial distribu-
tion and temporal duration of inundation areas [38,39]. Due to differences in water de-
mands/tolerances between species and the competitive interactions of different communi-
ties, changes in hydrological conditions may alter the dominance of species [40,41]. The
impacts are most pronounced in shallow water, where even small fluctuations in lake levels
can cause the environment to switch from one of standing water to one where sediments
are exposed to the air, or vice versa [41]. As a result, they can boost flooding-related
mortality or plant seed bank germination. Hence, hydrological factors such as water level,
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water depth, and inundation duration are regarded as key factors for the distribution of
wetland herbaceous communities [5,42]. The impacts of variable hydrological processes on
vegetation distribution have been investigated previously in the Poyang Lake wetland using
linear regression and sensitivity index [28,29,43]. These results reveal the response patterns
and change trends of wetland plants in Poyang Lake in response to hydrological processes
from different perspectives and scales. In contrast, relatively few studies have analyzed and
quantified wetland vegetation’s water demand from the perspective of ecological niche [44–46].
Moreover, traditional studies of vegetative hydrological niches focus more on the mecha-
nistic and microscopic levels [47]. More detailed analysis with sufficient in situ data and
classification at smaller scales is required to address vegetation distribution patterns in
complex and variable wetland water environments. Therefore, a better understanding
of how the hydrological system affects wetland herbaceous communities’ distribution is
crucial for monitoring and habitat assessment of wetland ecosystems.

Given this background, the main purpose of this study was to develop an integrated
framework to quantify the spatial distribution of the dominant vegetation communities in
response to inundation, and to propose criteria for discriminating the spatial distribution
of these communities. Specifically, this study aimed to (i) develop a wetland herbaceous
community classification model based on machine learning to map the detailed communi-
ties; (ii) analyze the hydrological regime’s influence mechanisms on the spatial distribution
of the wetland herbaceous communities based on the changes in the historical water level
dynamics since 2000; and (iii) quantify the hydrological niches of the dominant vegetation
communities. This study is expected to improve the understanding of the hydrological
effects on vegetation communities in the Poyang Lake wetland.

2. Materials and Methods
2.1. Poyang Lake and Nanji Wetland National Nature Reserve

Poyang Lake (28◦11′–29◦51′N, 115◦31′–117◦06′E) is located in the southern bank of
the lower reaches of the Yangtze River Basin (Figure 1a), with a catchment area of about
162,000 km2. This area belongs to the subtropical zone, with a mean annual precipitation of
1400–2400 mm and a mean annual air temperature of 16–19 ◦C [48]. It receives catchment
inflows from five major tributaries (Xiushui River, Ganjiang River, Fuhe River, Xinjiang River,
and Raohe River) and discharges to the Yangtze River at Hukou in the north (Figure 1a).
Due to the heterogeneity of precipitation and the connectivity of the rivers to Poyang
Lake, the lake area fluctuates wildly throughout the year. The lake area is 735, 2670, and
3190 km2 at water levels of 10, 14, and 19 m (Xingzi Station), respectively [49]. Formed by
a combination of lacustrine rivers, the lake has a complex topography, including narrow
channels, periodically separated lakes, and large areas of seasonally inundated alluvial
deltas [50]. Under the combined effects of natural and human activities, 102 dish-shaped
lakes were formed in the estuarine delta formed in the Poyang Lake [51].

There are two national nature reserves in Poyang Lake. The largest is the Nanji Wetland
National Nature Reserve (NWNNR), listed as an internationally important wetland by
the Ramsar Convention. It is located in the southern region of Poyang Lake (Figure 1b),
covering an area of 333 km2. The NWNNR was classified into a sub-lake zone and a
wetland zone in terms of the hydrological and geographic settings [52]. The study area
on Dong Lake’s shore belongs to the wetland zone and covers 1.29% of the NWNNR
(Figure 1c). As a part of the Poyang Lake floodplain, this reserve experiences considerable
seasonal water level fluctuations [53].
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Figure 1. Map of the study area: (a) locations of the Poyang Lake in the Yangtze River Basin, China;
(b) Nanji Wetland National Nature Reserve and Kangshan Station in Poyang Lake; (c) drone image of
the area used for training and validation with different land covers.

Subtropical monsoons in Poyang Lake lead to strong seasonality in precipitation,
resulting in complex topography and dramatic variations in the total water coverage within
a year [12]. Annual average fluctuations in water levels (Xingzi Station) vary by 8~18 m [54].
From April to September (i.e., the wet season), almost all sub-lakes of the Poyang Lake are
connected to form a large lake, with an area peaking at approximately 4000 km2 [13,29]. This
period is also a growing season for aquatic vegetation and high-elevation grasses [26]. From
October to March (i.e., the dry season), the lake is divided into many segments separated
by the exposed floodplains, becoming a complex assembly of distinct hydrological rivers
and shallow waters interspersed with meadows, with a small inundation area of less than
1000 km2 [9]. At this time, the exposed lake mudflats are gradually colonized by emergent
vegetation during the growing season [26,55,56].

The alternating land–water transition zone (i.e., fluctuation zone) between the wet-
land’s highest and lowest flood levels essentially delineates the range of vegetation types in
the wetland. Under seasonal flood inundation stress, the vegetation in the wetland shows
a regular spatial distribution pattern along the elevation. Reeds, sedges, and aquatics
are distributed from the high region to the low region [9]. The dominant wetland herba-
ceous communities in the study area are Triarrhena lutarioriparia + Phragmites australis Ass
(Triarrhena Ass), Carex cinerascens Ass (Carex Ass), and Phalaris arundinacea Ass (Phalaris
Ass) [8,57] (Table 1). Under severe summer flood conditions, high mortality rates occur
in herbaceous communities [49]. During the fall months, the Carex Ass initiates regrowth
as the soil is exposed, and the Triarrhena Ass enters the booting and heading stage, while
Phalaris Ass withers gradually [9,29].
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Table 1. Summary of the dominant species and their phenology for the three plant communities.

Community Phalaris Ass Carex Ass Triarrhena Ass

Dominant species Phragmites australis Carex cinerascens Triarrhena lutarioriparia,
Phragmites australis

Accompanying
species

Potentilla limprichtii, Carex ovatispiculata,
and Lapsana apogonoides

Potentilla limprichtii spp., Cardamine lyrata
spp., and various Carex spp.

Carex cinerascens, Carex argyi,
and Polygonum posumbu

Coverage 60~80% 95~100% 85~98%
Structure Vertical (two layers) Horizontal Vertical (three layers)

Phenology

Perennial herb that sprouts from
January to February, blooms before the
beginning of the flooding season, and

fully develops from April to May [29]. It
is submerged during the flood and

continues to grow after it recedes until
the winter ends [29].

Perennial herb with two growing seasons
(late spring and mid-autumn) and sprouts in

the early spring. It reaches its maximum
coverage in April during the first growing
season [58]. Generally, they are flooded in

the flood season, and a large number of
aboveground parts of Carex die or become

dormant. The second growing season begins
in early autumn when the floodwaters

recede, and germination takes place until the
maximum coverage is reached, before
completely withering in winter [59,60].

Blooms from September to
October, bears fruit in

November, and leaves wither
in December [29].

The spatial variability of hydrological and wetland vegetation dynamics provides het-
erogeneous habitats and abundant food for migratory waterbirds in the form of stopovers
and wintering places [61]. The NWNNR is the key node on the East Asia–Australia wa-
terfowl migration route for migratory waterbirds, some of which are listed as nationally
protected wildlife species in China (e.g., the Oriental stork (Ciconia Boyciana), the hooded
crane (Grus Monacha), and the Siberian crane (Grus leucogeranus)) [7,62].

2.2. Data Acquisition
2.2.1. Field Sampling Data

The period with high vegetation cover of Poyang Lake is the dry season, and physical
access to many wetlands is hindered by the water being too shallow for direct access.
Comprehensive field studies have focused on the Dong Lake transection in the NWNNR,
balancing admittance, accessibility, and the acquisition of a representative sample of the
NWNNR (Figure 1c). To improve vegetation survey efficiency to obtain ground reference
data over large areas, the surveys during the winter of 2020 were carried out as follows:
An unmanned aerial vehicle (UAV, DJI Phantom 4) survey provided aerial high-resolution
RGB imagery. A spatial true-color map was developed based on this imagery using Pix4D
software, which was used to delineate the corresponding boundary of each vegetation
community (Figure 1c). Finally, we checked and sampled the field to determine the complex
and ambiguous areas of plant community distribution.

At georeferenced locations of a 10 m × 10 m (i.e., one pixel of Sentinel-2) grid, we
recorded which plant community dominated (i.e., covered more than 50%). A total of
42,590 such grid cells were recorded during these surveys to obtain training and validation
data. Seven classes were distinguished: (1) Triarrhena Ass, (2) Carex Ass, (3) Phalaris Ass,
(4) mudflats (with some Carex cinerascens Ass), (5) sand, (6) water, and (7) mixed pixels (i.e.,
pixels that could not be defined as dominated by one community).

2.2.2. Remote Sensing Data

A cloud-free Sentinel-2A Multispectral Instrument (MSI) scene (Sentinel Scene Iden-
tifier: S2A_MSIL1C_20201222T025131_N0209_R132_T50RMT_20201222T051459) was ac-
quired from the ESA Sentinels Scientific Data Hub on 22 December 2020 (the same date
when the field sampling took place). Its processing level 1C includes radiometric and geo-
metric corrections with sub-pixel accuracy [63]. On this basis, the atmospheric correction
was performed using the Sen2cor plug-in in the Sentinel Application Platform (SNAP)
software provided by the ESA to facilitate subsequent band calculations. With this step,
the widely used L2C was achieved [64,65]. We refrained from conducting a topographic
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correction because the study area is a floodplain [26]. The MSI instruments of Sentinel-2
have three spatial resolutions (i.e., 10, 20, and 60 m). All coarser bands were then resampled
to 10 m by nearest-neighbor resampling to match the higher-resolution bands. We further
calculated each pixel’s most common multispectral indices (e.g., NDVI, EVI, and RVI; more
details in Table A1) as a database for the classification model.

2.2.3. Hydrological and Topographic Data

The daily lake stages at the nearest gauging station of the study area (i.e., at Kangshan;
Figure 1b) from 2000 to 2020 were used to reflect the inundation dynamics of the study area.
The digital elevation model (DEM) was obtained from Jiangxi Province, and was used in
conjunction with the measured water level to calculate the water depth of each pixel. The
DEM elevation and water level elevation references were consistent.

2.3. Methodology

For this study, a framework was designed to quantitatively investigate the spatial
distribution of the dominant herbaceous communities in response to Poyang Lake’s flood
inundation, as shown in Figure 2. We started by using drone imagery to determine the
approximate boundaries of each plant community, and then combined this with field
surveys to produce a final plant community distribution map. Sentinel-2 imagery of the
same date provided the main spectral bands and multispectral indices for vegetation
community classification. The plant community classification model was built using
each pixel’s vegetation type, band information, and multispectral indices as input data.
In addition, a genetic algorithm was used to optimize the support-vector classification
approach, simplifying the model inputs and parameter-synchronized optimization to
improve the classification accuracy. Finally, maps of plant community classification results
assessed for accuracy were combined with maps of inundation information obtained
from hydrological data and topographic maps to analyze the relationship between plant
community distribution and inundation.

The wetland herbaceous vegetation classification system uses multispectral indices
and band information to separate the classes. The most significant vegetation spectral
features are the blue (Band 2), green (Band 3), red (Band 4), and the vegetation red-edge
(Bands 5, 6, 7, and 8a). In addition, near-infrared (Band 8) is also essential to distinguish
land cover. Hence, Bands 2, 3, 4, 5, 6, 7, 8, and 8a were selected to construct the vegetation
classification model. There were 42,590 pixels, of which 3964 were mixed, so 90.69% of
the pixels could be attributed to a single class. The mixed pixels were not involved in
the training and validation of the classification model. The training and validation set
of the model were selected randomly based on the principle of uniform distribution of
each class. Each class in the training and validation sets was close to 1:1. In order to save
training time, a random portion (25~40%) of the training set was taken to participate in the
actual training [66]. Finally, an error matrix was produced, and the total number of points
correctly predicted was divided by the total number of test points to calculate the overall
accuracy (OA). In addition, we calculated the user accuracy (UA), producer accuracy (PA),
and a kappa coefficient to test the significance of differences in accuracy [67,68].

In order to analyze the influence of hydrological conditions on the wetland vegeta-
tion within the study area, four hydrological indicators were defined and used at each
10 m × 10 m pixel of Sentinel-2: annual average inundation days (AIDU), average inunda-
tion days per inundation (IDUI; multiple inundation events may occur each year), annual
average inundation depth (AIDE), and (d) annual maximum inundation depth (MIDE).
The mean conditions for the four hydrological regime indicators (AIDU, IDUI, AIDE,
MIDE) and the area fractions (simply the ratio between the number of the characteristic
pixels and the number of all pixels in the same area [5]) for the three wetland herbaceous
communities within the study area were analyzed by canonical correspondence analysis
(CCA) to assess the combined and individual effects of hydrological regimes on plant
community distribution.
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The relationship between a vegetation population and environmental factors typically
follows a Gaussian distribution, and the mean value and standard deviation for each
community characterize the average ecological conditions and the ecological plasticity of
the communities, respectively [69]. For the cases that fit the Gaussian distribution well, the
hydrological niches were calculated by the Gaussian regression model [28]. Specifically, the
optimal hydrological niche and the ecological optimum were described by the standard
deviation and the median value of the environmental conditions. However, for some wet-
land herbaceous communities in the study area of the NWNNR, the Gaussian assumption
did not hold because competitive plant communities lead to skewed distributions. The
quantile method was used for these cases to find the median (ecological optimum). Then,
the standard deviation centered on the median was used to obtain the hydrological niche.

2.3.1. Support-Vector Classification

Previous studies used various supervised classification methods (e.g., decision trees,
minimum distance, and maximum likelihood) to produce wetland classification maps [20].
However, most supervised classification schemes require a sufficiently large number of
training samples and have some drawbacks, such as overlearning, dimension disasters,
and local minima [70]. Support-vector machines (SVMs) represent a group of theoretically
superior machine learning algorithms compared to traditional ones, employing optimiza-
tion algorithms to locate the optimal boundaries between classes [23,71]. Statistically, the
optimal boundaries should be generalized to unseen samples with the least errors among
all possible boundaries, minimizing the confusion between classes. Several experiments
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found the SVMs to be competitive with the best available classification methods, including
neural networks and decision tree classifiers [11,23,27]. The superior performance of the
SVMs was previously demonstrated in wetlands through classifying Landsat and Sentinel-2
multispectral images [65,72,73].

SVMs solve a convex quadratic optimization problem. The optimal global solution for
solving the whole equation is transformed to find the local solution that could be accom-
plished by solving the kernel function. The training data pixels closest to the hyperplane
determined to solve the kernel function are called support vectors, critical for the pixel
value gap between the classes. For example, SVMs separate the image with the hyperplane,
which could maximize the gap between the classes. The kernel function could be linear,
polynomial, a radial basis function, or sigmoid [70]. Since the well-known radial basis
function (RBF) kernel is commonly used in wetland classification, its results have generally
been satisfactory [26,74,75]. This was used as the kernel type in the SVM classification in
our study. When the RBF is selected, the SVM needs two input parameters specified by the
user: C (penalty parameter) and γ (gamma); γ can implicitly determine the distribution
of the sample data in the new higher-dimensional space. If γ is set too large, it will only
occur in the data similar to the support-vector sample, and the classification result of the
unknown samples is poor. Inversely, it can lead to overfitting, which cannot yield high
accuracy [24].

2.3.2. Evolutionary-Algorithm-Based SVM Parameter Optimization

Different multispectral indices and satellite spectral band information represent dif-
ferent references for the classification of plant communities, and many feasible input
combinations exist. A minimal set of variables determining the system’s state and devel-
opments are crucial for predicting system developments [76]. Therefore, we applied a
genetic algorithm to search for the optimal model input variables (i.e., 20 multispectral
indices and 8 bands) to solve this problem. The model parameters were also optimized
simultaneously to ensure that the predictive ability of the candidate variable combination
(i.e., some of the multispectral indices and satellite image bands) was accurately reflected.
The proposed genetic-algorithm-based synchronized optimization process of the model’s
SVM input variables and SVM parameters is shown in Figure 2.

The synchronized optimization was performed in the following steps:

1. Start the search process based on the initial population. Each individual in the
population contains a floating-point number (0 to 1) representing each input variable
to indicate whether it participates in the model construction or not, and also prepares
a floating-point number for each support-vector classification parameter;

2. Apply genetic operators (i.e., selection, crossover, and mutation) to generate the
offspring population;

3. Evaluate each individual in the offspring population according to the following steps:

(a) Divide the individual into two parts: one for variable indication information
and the other for model parameters;

(b) If the floating-point number is greater than 0.5, the corresponding variable is
selected to build the model; otherwise, it is abandoned;

(c) Train the support-vector classification model using n-fold cross-validation to
avoid overfitting;

(d) Use the cross-validation’s root-mean-square error as the fitness value of
the individual;

4. Check whether the generation has reached the maximum;
5. If yes, end the search and return the best individual; otherwise, go back to Step (2).

A 5-fold cross-validation was applied for simultaneous optimization to avoid overfit-
ting. All model inputs were linearly normalized to the interval [0, 1], ensuring that each
input received the same weight in model training, as follows:
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x′ =
x− xmin

xmax − xmin
(1)

where x and x’ are the data before and after normalization, respectively, while xmax and
xmin are the maximum and minimum values of the observed data, respectively.

2.3.3. Canonical Correspondence Analysis

The canonical correspondence analysis (CCA) was used to examine the relationship
between species and environmental variables in this study [77,78]. The gradient length was
larger than 2.4 standard deviation units; thus, the data could be used for a further CCA
analysis [79]. Therefore, we evaluated the relative importance of hydrological factors by
conducting a partial CCA on the distribution of vegetation communities. The three vege-
tation communities and the four statistical hydrological variables for the study area were
used to generate species and environmental matrices, respectively. CCA was performed
using the CANOCO version 5.0 software.

3. Results
3.1. Wetland Plant Community Classification

For traditional classification with no genetic algorithm optimization (i.e., input all
bands and multispectral indices) and the input parameters (i.e., C and γ) set to default
values, the classification results were 90.98% accurate in the training set and 90.63% accurate
in the validation set. Although these results are acceptable, they may cause unnecessary
uncertainty for subsequent hydrological impact analysis, and are computationally expen-
sive. Therefore, we applied an evolutionary-algorithm-based SVM model to optimize
the input variables and parameters of the classification model. The parameter settings
and search boundaries of the genetic algorithm in simultaneous optimization are given in
Table A2. Finally, the model selected 5 bands—Bands 3, 4, 5, 8, 8a—and 10 indices for im-
proved classification, and the following parameters were retrieved: C= 191,982,152,643.902,
γ = 0.05.

The overall classification accuracy of the training and validation set was 98.69% and
98.20%, respectively (Table A3). The kappa coefficients in the training and validation
sets were both 0.98. The accuracy of the optimized model was improved by almost 8%.
Figure 3a shows the classification results, including the misclassification points. Although
the classification accuracy was excellent, some classification errors remained in the mixed
vegetation community area. The misclassification points mainly occurred in areas with
complex vegetation compositions, such as Phalaris Ass and Carex Ass in different growing
stages or mixed with Carex Ass or Triarrhena Ass. This leads to the misclassification of
Phalaris Ass to Carex Ass or mudflats with mixed vegetation areas.
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After implementing the classification model for training and validation in the area
close to Dong Lake (1.29% of the NWNNR), the approach was applied to the whole
NWNNR (Figure 3b). The results showed that the NWNNR was dominated by sand
(33.3%), followed by the water fraction (26.4%), in winter 2020. Carex Ass was the most
widely distributed species (14.92%), with Triarrhena Ass and Phalaris Ass not far apart at
8.08% and 9.96%, respectively.

3.2. Hydrological Drivers for the Spatial Distribution of Wetland Herbaceous Communities

The spatial variations of the four hydrological conditions in the NWNNR study area
are displayed in Figure 4. The step sizes (intervals) of AIDU, IDUI, AIDE, and MIDE were
specified as 10 days, 5 days, 0.05 m, and 0.02 m, respectively. The AIDU was 183 days on
average, with a range from 105 to 273 days, where 120~130 days of inundation duration per
year was the most frequent result (Figure 5a). The IDUI was 32~88 days, with durations
between 35 and 40 days being the most frequent (Figure 5b). The AIDE ranged from 1.42 to
2.01 m, averaging 1.58 m, with the widest area fraction of 1.5~1.55 days (Figure 5c). The
MIDE varied from 5.65 to 7.75 m, with the most frequent maximum inundation depth of
5.9 to 6.1 m (Figure 5d), closely related to the elevation distribution characteristics of the
study area.
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The biplot of the CCA separated the three vegetation communities in different zones
(Figure 6). The ordination axes 1 and 2 cumulatively explained 59.2% of the variances in
the species and environment. Statistical variables associated with inundation duration and
depth already captured most species distribution variations. The CCA showed that the
percentage of the cumulative variance of the first axis was 41.91%, accounting for 70.83%
of the information regarding the relationships between species and environments. In the
CCA biplots, axis 1 was negatively correlated with the AIDU, IDUI, AIDE, and MIDE,
which mainly represented a decreasing inundation condition from left to right. Triarrhena
Ass was distributed in the right part of the biplot, with shallow inundation depth and
duration, and was clearly distinguished from Carex Ass and Phalaris Ass. Axis 2 was
strongly positively correlated with the four hydrological indices, representing a decreasing
inundation condition from the bottom to the top. Phalaris Ass was at the upper left part of
the biplot and was further separated from Carex Ass by its inundation days.

The area fraction of Phalaris Ass, Carex Ass, and Triarrhena Ass in the study area was
calculated for the different levels of hydrological indicators to determine their preference.
The results are shown in Figure 7.

Phalaris Ass was mainly located in the downstream part of the study area, at a lower
elevation between the lakeshore and the lake center (Figure 3). The average annual inunda-
tion days in the space occupied by Phalaris Ass were mainly in the range of 150~240 days
(Figure 7a). The maximum area fraction of Phalaris Ass was 53.01%, while the average
annual inundation days were between 220 and 230 days. Phalaris Ass only grew in the area
with average inundation of 40~70 days per inundation, and mainly in the regions that were
inundated for 50~60 days at a time (Figure 7b). The average inundation depth of the space
occupied by Phalaris Ass was mainly 1.60 to 1.75 m. The area fraction of Phalaris Ass was
greatest at 39.03% when the average inundation depth was 1.60 to 1.65 m. Figure 7c,d show
that the annual maximum inundation depth that Phalaris Ass could tolerate was 7.3 m. The
Phalaris Ass almost died when the average annual inundation was greater than 240 days or
when the average inundation depth was greater than 1.75 m.



Remote Sens. 2022, 14, 4870 12 of 20

Remote Sens. 2022, 14, x FOR PEER REVIEW 12 of 22 
 

 

ments. In the CCA biplots, axis 1 was negatively correlated with the AIDU, IDUI, AIDE, 
and MIDE, which mainly represented a decreasing inundation condition from left to 
right. Triarrhena Ass was distributed in the right part of the biplot, with shallow inunda-
tion depth and duration, and was clearly distinguished from Carex Ass and Phalaris Ass. 
Axis 2 was strongly positively correlated with the four hydrological indices, representing 
a decreasing inundation condition from the bottom to the top. Phalaris Ass was at the 
upper left part of the biplot and was further separated from Carex Ass by its inundation 
days. 

 
Figure 6. Biplot of the final CCA showing the distribution of three vegetation communities along 
the gradient of the four hydrological indicators in the study area. a—Annual average inundation 
days (d), b—Average inundation days per inundation (d), c—Annual average inundation depth 
(m), and d—Annual maximum inundation depth (m). 

The area fraction of Phalaris Ass, Carex Ass, and Triarrhena Ass in the study area was 
calculated for the different levels of hydrological indicators to determine their preference. 
The results are shown in Figure 7. 

Phalaris Ass was mainly located in the downstream part of the study area, at a lower 
elevation between the lakeshore and the lake center (Figure 3). The average annual in-
undation days in the space occupied by Phalaris Ass were mainly in the range of 150~240 
days (Figure 7a). The maximum area fraction of Phalaris Ass was 53.01%, while the av-
erage annual inundation days were between 220 and 230 days. Phalaris Ass only grew in 
the area with average inundation of 40~70 days per inundation, and mainly in the regions 
that were inundated for 50~60 days at a time (Figure 7b). The average inundation depth 
of the space occupied by Phalaris Ass was mainly 1.60 to 1.75 m. The area fraction of 
Phalaris Ass was greatest at 39.03% when the average inundation depth was 1.60 to 1.65 
m. Figure 7c,d show that the annual maximum inundation depth that Phalaris Ass could 
tolerate was 7.3 m. The Phalaris Ass almost died when the average annual inundation was 
greater than 240 days or when the average inundation depth was greater than 1.75 m. 

Carex Ass was mainly grown at mid-to-upper elevations between the lakeshore and 
the lake center (Figure 3), adjacent to Triarrhena Ass at higher elevations, and below 
Phalaris Ass. The average of inundation days per year for the space occupied by Carex Ass 
was mainly in the range of 120~230 days, with the greatest area fraction of 98.84% when 
the average number of days of inundation per year was between 160 and 170 days (Fig-
ure 7a). For the average inundation time in terms of days per inundation, Carex Ass had a 
maximum area fraction of 90%, achieved at the segment of 30~35 days (Figure 7b). The 
average inundation depth of the space occupied by Carex Ass was mainly 1.5 to 1.7 m. 
The maximum area fraction of Carex Ass was 45.68% when the average inundation depth 
was 1.55 to 1.6 m (Figure 7c). Carex Ass could also grow in the annual maximum inun-
dation depth of 7.3 m, but the area fraction was lower than that of Phalaris Ass (Figure 
7d). Average annual inundation over 230 days or average inundation depth greater than 
1.7 m cannot facilitate the normal growth and development of Carex Ass. 

Figure 6. Biplot of the final CCA showing the distribution of three vegetation communities along the
gradient of the four hydrological indicators in the study area. a—Annual average inundation days
(d), b—Average inundation days per inundation (d), c—Annual average inundation depth (m), and
d—Annual maximum inundation depth (m).

Remote Sens. 2022, 14, x FOR PEER REVIEW 13 of 22 
 

 

 

Figure 7. The area fraction of each plant community based on the statistics of the (a) annual average 

inundation days (d), (b) average inundation days per inundation (d), (c) annual average inundation 

depth (m), and (d) annual maximum inundation depth (m) in the study area. 

Triarrhena Ass was mainly located at higher elevations close to the lakeshore (Figure 

3), with Carex Ass beneath. The average annual inundation for the space occupied by 

Triarrhena Ass was mainly 110~140 days, with the greatest area fraction of 99.71%, while 

the average annual inundation was 110~120 days (Figure 7a). The average inundation 

duration per inundation for Triarrhena Ass was shorter than that for other two commu-

nities (Figure 7b). It ranged from 30 to 45 days, and there was only a small amount per 

segment. The average inundation depth of the space occupied by Triarrhena Ass was 

mainly in the range of 1.4 to 1.55 m, with the greatest area fraction of nearly 100% when 

the average inundation depth was 1.4 to 1.45 m (Figure 7c). Triarrhena Ass had the lowest 

annual maximum inundation depth (Figure 7d), and almost ceased to occur when the 

average annual inundation was greater than 140 days or the average inundation depth 

was greater than 1.55 m. 

A vegetative population’s normal distribution along environmental gradients can be 

assessed using a Gaussian regression model [24]. However, the statistical results showed 

that only two cases—i.e., the ADUE and MIDE of Triarrhena Ass—did not fit the Gauss-

ian distribution well. This may originate from Triarrhena Ass growing in the most mar-

ginal hydrological niche of the three herbaceous communities. The hydrological niche 

and ecological optimum of the three plant communities are quantified in Table 2. The 

statistical results indicate a significant difference in the optimal inundation conditions of 

different wetland herbaceous communities. The ecological optimum of Phalaris Ass was 

the largest, followed by Carex Ass, while that of Triarrhena Ass was the smallest. 
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Carex Ass was mainly grown at mid-to-upper elevations between the lakeshore and the
lake center (Figure 3), adjacent to Triarrhena Ass at higher elevations, and below Phalaris Ass.
The average of inundation days per year for the space occupied by Carex Ass was mainly
in the range of 120~230 days, with the greatest area fraction of 98.84% when the average
number of days of inundation per year was between 160 and 170 days (Figure 7a). For the
average inundation time in terms of days per inundation, Carex Ass had a maximum area
fraction of 90%, achieved at the segment of 30~35 days (Figure 7b). The average inundation
depth of the space occupied by Carex Ass was mainly 1.5 to 1.7 m. The maximum area
fraction of Carex Ass was 45.68% when the average inundation depth was 1.55 to 1.6 m
(Figure 7c). Carex Ass could also grow in the annual maximum inundation depth of 7.3 m,
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but the area fraction was lower than that of Phalaris Ass (Figure 7d). Average annual
inundation over 230 days or average inundation depth greater than 1.7 m cannot facilitate
the normal growth and development of Carex Ass.

Triarrhena Ass was mainly located at higher elevations close to the lakeshore (Figure 3),
with Carex Ass beneath. The average annual inundation for the space occupied by Triarrhena
Ass was mainly 110~140 days, with the greatest area fraction of 99.71%, while the average
annual inundation was 110~120 days (Figure 7a). The average inundation duration per
inundation for Triarrhena Ass was shorter than that for other two communities (Figure 7b).
It ranged from 30 to 45 days, and there was only a small amount per segment. The average
inundation depth of the space occupied by Triarrhena Ass was mainly in the range of 1.4 to
1.55 m, with the greatest area fraction of nearly 100% when the average inundation depth
was 1.4 to 1.45 m (Figure 7c). Triarrhena Ass had the lowest annual maximum inundation
depth (Figure 7d), and almost ceased to occur when the average annual inundation was
greater than 140 days or the average inundation depth was greater than 1.55 m.

A vegetative population’s normal distribution along environmental gradients can be
assessed using a Gaussian regression model [24]. However, the statistical results showed
that only two cases—i.e., the ADUE and MIDE of Triarrhena Ass—did not fit the Gaussian
distribution well. This may originate from Triarrhena Ass growing in the most marginal
hydrological niche of the three herbaceous communities. The hydrological niche and
ecological optimum of the three plant communities are quantified in Table 2. The statistical
results indicate a significant difference in the optimal inundation conditions of different
wetland herbaceous communities. The ecological optimum of Phalaris Ass was the largest,
followed by Carex Ass, while that of Triarrhena Ass was the smallest.

Table 2. The optimal hydrological niche (optimum) of each wetland herbaceous community in the
study area.

Phalaris Ass Carex Ass Triarrhena Ass

Average annual inundation days (d) 187~251 (219) 132~245 (188.2) 107~130 (119.9)
Average inundation days per inundation (d) 44~65 (54.7) 24~61 (44.3) 33~42 (36.5)

Annual average inundation depth (m) 1.54~1.76 (1.65) 1.50~1.68 (1.58) 1.43~1.50 (1.45) *
Annual maximum inundation depth (m) 6.58~7.41 (7.00) 6.13~7.24 (6.69) 5.70~5.99 (5.87) *

* Did not fit the Gaussian distribution well.

4. Discussion

In this study, we first used a synchronized optimization algorithm to ensure a more
accurate and efficient herbaceous community classification model, and then the relation-
ships between the three plant communities and the four hydrological indicators were
analyzed by CCA. Finally, the detailed hydrological niches of the three plant communities
were quantified. How the plant communities of the Poyang Lake wetland respond to the
different hydrological indicators under this framework still needs to be discussed.

The optimal hydrological niches can indicate the competitive advantage of a vegetation
community. For example, the optimal hydrological niches for Carex Ass almost overlapped
with those for Phalaris Ass, but there was little overlap with Triarrhena Ass. Phalaris Ass was
the most tolerant to inundation depth and duration, while Carex Ass had the widest optimal
hydrological niches. This explains the wide distribution area of Carex Ass, while Phalaris Ass
grew at the lowest end of the hydrological gradient relative to the other two communities.
Carex Ass was able to grow in all other communities’ hydrological conditions, providing
further explanation for its wide distribution. The results did not deviate significantly
from previous conclusions on suitable hydrological conditions derived from controlled
experiments or field surveys [28,80]. The authors of [28] also found that the optimal AIDU
and AIDE of the Carex community were greater than those of the Phragmites community.

Of the four factors examined by CCA, MIDE and IDUI best explained the distribution
of plant communities and were the least correlated. From the perspective of the plants’
adaptation strategy in response to flooding, MIDE and IDUI can adequately characterize
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the hydrological niches of the three plant communities. In contrast, AIDU and AIDE
interpret the hydrological factors purely from a statistical point of view, while MIDE and
IDUI can directly affect the survival of plants. In addition, the hydrological conditions most
conducive to the growth and reproduction of wetland plants vary throughout the year
and at different stages of growth [9]. Desiccation and inundation tolerance determine the
distribution of many plant communities along the aquatic–terrestrial transition zones [81].
Since it is difficult to tolerate long-term and deep root submersion, the low flood stage
promotes the growth of Triarrhena Ass [82]. In contrast, Carex Ass and Phalaris Ass grow
best on exposed sites with wet soils. Under normal summer flood conditions, the plants are
submerged and dormant [83]. Wetland plants have gradually evolved a range of biological
traits and life-history strategies to cope with specific rhythms of water level fluctuations
during long-term adaptation, and vegetation communities will continue to adjust to future
long-term changes in lakes’ hydrological conditions [84–86].

For floodplains, hydrological conditions are a vital determinant of wetland herbaceous
communities’ overall biomass and spatial distribution [87,88]. However, it should be
noted that several other factors—such as soil [89], microtopography [49,90], and water
table [91]—can also influence vegetation by altering the available water. Thus, vegetation
competes intraspecifically and interspecifically for readily available water sources. For
example, soil compaction and physical abrasion appear to favor stress-tolerant root plants
over shrubs and more sensitive perennials [90,92]. On the other hand, the response of plant
communities to flooding is affected by the bioecological characteristics of the species in
question [37]. Fluctuations in water levels can affect the growth of individual species (i.e.,
weaker or stronger competitive advantage) and, thus, change the species’ relationships. In
order to fully grasp the distribution principles of vegetation in this changing habitat, the
focus of later research should involve interspecific and intraspecific relationships.

The hydrological situation of Poyang Lake is influenced by many external factors, such
as the discharge levels of the Yangtze River, its five major tributaries, and its upstream reser-
voirs [52,93]. Moreover, most of the sub-lakes of Poyang Lake are under artificial control by
dams [94]. These sub-lakes are submerged during summer floods and detached from the
main body of the lake during the fall months as the lake stage declines and the lake extent
shrinks. Shallow water in these sub-lakes during the late fall and winter months provides an
ideal habitat for aquatics and migratory waterbirds. Therefore, if the hydrological variation
of the Poyang Lake is clearly described, artificial control of sub-lakes can be used to regulate
the fluctuation of water levels to meet the growing demand of the plant communities and
migratory birds. In future studies, adding a hydrodynamic model and assessing the spa-
tiotemporal fluctuations via remote sensing (e.g., inundation mapping using satellite-based
techniques) can provide further insights into the hydrology–vegetation relationships. To
this end, the fine topography—especially the artificial control of sub-lakes—needs to be
further incorporated to improve the analytical framework.

5. Conclusions

This study established a framework that integrates machine-learning-based methods
for plant community classification and quantitative analysis of hydrological niches of
the communities. The framework was used to study the relationships between wetland
herbaceous community distribution and the hydrological regimes of Poyang Lake. The
following conclusions can be drawn:

(1) Support-vector classification with an input/parameter-synchronized optimization is
beneficial for constructing an accurate wetland herbaceous vegetation classification
model. The optimized model improved the classification accuracy by ~8% compared
with the classic SVM.

(2) Significant interspecific differences were found in terms of the hydrological niche.
Carex Ass was the most adaptable to the duration of inundation, had the widest
distribution range, and had a larger hydrological niche amplitude. Triarrhena Ass
was the least capable and had the smallest hydrological niche amplitude. The main
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reasons for the interspecific differences were the different survival strategies of species
in the face of inundation, such as dormancy and biological traits.

(3) The analytical framework was successfully applied to identify key indicators character-
izing plant communities’ distribution and quantifying the hydrological niches/optima
of the communities in the Poyang Lake wetland.

Our integrated analytical framework could contribute to hydrological management
design to better protect the wetland plant community structure in Poyang Lake and,
implicitly, in comparable global wetland ecosystems.
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Appendix A

Table A1. Multispectral indices used in this study.

Indices Formula (Sentinel-2) References

DVI-Difference Vegetation Index B8 − B4 [95]
RVI-Ratio Vegetation Index B8/B4 [96]

NDVI- Normalized Difference Vegetation Index B8−B4
B8+B4

[97]
EVI—Enhanced Vegetation Index 2.5×(B8−B4)

B8+6×B4−7.5×B2+1
[98]

MSAVI—Modified Soil Adjusted Vegetation Index 2B8+1−
√
(2B8+1)2−8(B8−B4)

2
[99]

RDVI—Renormalized Difference Vegetation Index
√

B8−B4
B8+B4

∗ (B8 − B4) [100]

HJVI—Huan Jing Vegetation Index 2(B8−B4)
B3−7.5B2+0.9

[101]

ARVI -Atmospherically Resistant Vegetation Index B8−(2B4−B2)
B8+(2B4−B2)

[102]

VDVI—Visible-band Difference Vegetation Index 2B3−B4−B2
2B3+B4+B2

[103]
NGRDI—Normalized Green and Red Difference Vegetation Index B3−B4

B3+B4
[104]

NGBDI—Normalized Green and Bule Difference Vegetation Index B3−B2
B3+B2

[105]
NDVIre1—Normalized Difference Vegetation Index red-edge 1 B8−B5

B8+B5
[106]

NDVIre1n—Normalized Difference Vegetation Index red-edge 1 narrow B8a−B5
B8a+B5

[107]
NDVIre2—Normalized Difference Vegetation Index red-edge 2 B8−B6

B8+B6
[106]

NDVIre2n—Normalized Difference Vegetation Index red-edge 2 narrow B8a−B7
B8a+B7

[107]
NDVIre3—Normalized Difference Vegetation Index red-edge 3 B8−B7

B8+B7
[106]

NDVIre3n—Normalized Difference Vegetation Index red-edge 3 narrow B8a−B7
B8a+B7

[107]
PSRI—Plant Senescence Reflectance Index B4−B3

B6
[108]

CIre—ChlorophyerII Index red-edge B7
B5
− 1 [109]

NDre1—Normalized Difference red-edge1 B6−B5
B6+B5

[106]
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Table A2. Genetic algorithm parameter setting and search boundaries for the plant community
classification model.

Subject Parameter Value

Genetic Algorithm Maximum number of function
calls 4000

Normalized Geometric
Selection

Selecting the best individual
probability 0.05

Simple Crossover - -
Arithmetic Crossover - -
Heuristic Crossover Number of retries 10
Uniform Variation - -

Non-Uniform Variation Shape parameters 3
Multiple Non-Uniform

Variation Shape parameters 3

Boundary Variation - -

Search Boundaries

C lower boundary 1
C upper boundary 1 × 1012

γ lower boundary 1 × 10−2

γ upper boundary 1 × 104

Table A3. Accuracy matrix of the training/validation set.

Water Sand Phalaris Ass Carex Ass Triarrhena Ass Mudflat UA(%)

Water 3721/2724 21/30 0/0 0/0 0/0 0/0 99.44/99.20
Sand 13/22 2671/2789 0/0 0/0 0/0 2/10 99.44/98.87

Phalaris Ass 0/0 0/0 2516/2470 50/81 15/9 17/38 96.84/95.07
Carex Ass 0/0 0/0 70/69 5693/5806 4/3 4/7 98.65/98.66

Triarrhena Ass 0/0 0/0 20/27 0/2 1584/1637 0/0 98.75/98.26
Mudflat 0/0 12/15 20/38 1/2 0/0 2625/2788 98.76/98.07
PA(%) 99.65/99.41 98.78/98.41 95.81/94.85 99.11/98.56 98.81/99.27 99.13/98.07 OA = 98.69/98.20
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