001     910338
005     20240712100851.0
024 7 _ |a 10.3389/fenvs.2022.941490
|2 doi
024 7 _ |a 2128/32119
|2 Handle
024 7 _ |a WOS:000875618500001
|2 WOS
037 _ _ |a FZJ-2022-03758
082 _ _ |a 333.7
100 1 _ |a Hegglin, Michaela I.
|0 P:(DE-Juel1)192244
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Space-based Earth observation in support of the UNFCCC Paris Agreement
260 _ _ |a Lausanne
|c 2022
|b Frontiers Media
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1673509905_31061
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Space-based Earth observation (EO), in the form of long-term climate data records, has been crucial in the monitoring and quantification of slow changes in the climate system—from accumulating greenhouse gases (GHGs) in the atmosphere, increasing surface temperatures, and melting sea-ice, glaciers and ice sheets, to rising sea-level. In addition to documenting a changing climate, EO is needed for effective policy making, implementation and monitoring, and ultimately to measure progress and achievements towards the overarching goals of the United Nations Framework Convention on Climate Change (UNFCCC) Paris Agreement to combat climate change. The best approach for translating EO into actionable information for policymakers and other stakeholders is, however, far from clear. For example, climate change is now self-evident through increasingly intense and frequent extreme events—heatwaves, droughts, wildfires, and flooding—costing human lives and significant economic damage, even though single events do not constitute “climate”. EO can capture and visualize the impacts of such events in single images, and thus help quantify and ultimately manage them within the framework of the UNFCCC Paris Agreement, both at the national level (via the Enhanced Transparency Framework) and global level (via the Global Stocktake). We present a transdisciplinary perspective, across policy and science, and also theory and practice, that sheds light on the potential of EO to inform mitigation, including sinks and reservoirs of greenhouse gases, and adaptation, including loss and damage. Yet to be successful with this new mandate, EO science must undergo a radical overhaul: it must become more user-oriented, collaborative, and transdisciplinary; span the range from fiducial to contextual data; and embrace new technologies for data analysis (e.g., artificial intelligence). Only this will allow the creation of the knowledge base and actionable climate information needed to guide the UNFCCC Paris Agreement to a just and equitable success.
536 _ _ |a 2112 - Climate Feedbacks (POF4-211)
|0 G:(DE-HGF)POF4-2112
|c POF4-211
|f POF IV
|x 0
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Bastos, Ana
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Bovensmann, Heinrich
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Buchwitz, Michael
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Fawcett, Dominic
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Ghent, Darren
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Kulk, Gemma
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Sathyendranath, Shubha
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Shepherd, Theodore G.
|0 P:(DE-Juel1)192332
|b 8
|u fzj
700 1 _ |a Quegan, Shaun
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Röthlisberger, Regine
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Briggs, Stephen
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Buontempo, Carlo
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Cazenave, Anny
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Chuvieco, Emilio
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Ciais, Philippe
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Crisp, David
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Engelen, Richard
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Fadnavis, Suvarna
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Herold, Martin
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Horwath, Martin
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Jonsson, Oskar
|0 P:(DE-HGF)0
|b 21
700 1 _ |a Kpaka, Gabriel
|0 P:(DE-HGF)0
|b 22
700 1 _ |a Merchant, Christopher J.
|0 P:(DE-HGF)0
|b 23
700 1 _ |a Mielke, Christian
|0 P:(DE-HGF)0
|b 24
700 1 _ |a Nagler, Thomas
|0 P:(DE-HGF)0
|b 25
700 1 _ |a Paul, Frank
|0 P:(DE-HGF)0
|b 26
700 1 _ |a Popp, Thomas
|0 P:(DE-HGF)0
|b 27
700 1 _ |a Quaife, Tristan
|0 P:(DE-HGF)0
|b 28
700 1 _ |a Rayner, Nick A.
|0 P:(DE-HGF)0
|b 29
700 1 _ |a Robert, Colas
|0 P:(DE-HGF)0
|b 30
700 1 _ |a Schröder, Marc
|0 P:(DE-Juel1)166567
|b 31
700 1 _ |a Sitch, Stephen
|0 P:(DE-HGF)0
|b 32
700 1 _ |a Venturini, Sara
|0 P:(DE-HGF)0
|b 33
700 1 _ |a van der Schalie, Robin
|0 P:(DE-HGF)0
|b 34
700 1 _ |a van der Vliet, Mendy
|0 P:(DE-HGF)0
|b 35
700 1 _ |a Wigneron, Jean-Pierre
|0 P:(DE-HGF)0
|b 36
700 1 _ |a Woolway, R. Iestyn
|0 P:(DE-HGF)0
|b 37
773 _ _ |a 10.3389/fenvs.2022.941490
|g Vol. 10, p. 941490
|0 PERI:(DE-600)2741535-1
|p 941490
|t Frontiers in Environmental Science
|v 10
|y 2022
|x 2296-665X
856 4 _ |u https://juser.fz-juelich.de/record/910338/files/fenvs-10-941490.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:910338
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)192244
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)192332
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-211
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Die Atmosphäre im globalen Wandel
|9 G:(DE-HGF)POF4-2112
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 1
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-08-28
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-28
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-08-28
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-05-03T13:42:05Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-05-03T13:42:05Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2021-05-03T13:42:05Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2022-11-10
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)IEK-7-20101013
|k IEK-7
|l Stratosphäre
|x 0
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-7-20101013
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-4-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21