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Abstract. Fields of asymmetric tensors play an important role in many
applications such as medical imaging (di�usion tensor magnetic res-
onance imaging), physics, and civil engineering (for example Cauchy-
Green-deformation tensor, strain tensor with local rotations, etc.). How-
ever, such asymmetric tensors are usually symmetrized and then further
processed. Using this procedure results in a loss of information. A new
method for the processing of asymmetric tensor �elds is proposed re-
stricting our attention to tensors of second-order given by a 2× 2 array
or matrix with real entries. This is achieved by a transformation resulting
in Hermitian matrices that have an eigendecomposition similar to sym-
metric matrices. With this new idea numerical results for real-world data
arising from a deformation of an object by external forces are given. It is
shown that the asymmetric part indeed contains valuable information.

Keywords: asymmetric tensor �elds · spectral decomposition · line in-
tegral convolution.

1 Introduction

Fields of tensors are an essential notion in many applications such as medical
imaging, physics, and civil engineering. Tensors make their natural appearance
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as Cauchy-Green-deformation tensor, strain tensor with local rotations, permit-
tivity tensor, etc., or as structure tensor in image processing itself. Although the
notion of a tensor is quite sophisticated especially in mathematical literature, in
the context of this article we consider them simply as 2 × 2-arrays of complex
numbers subjected to the standard computational rules of matrix calculus. De-
spite this fact, we refer to any mapping from a suitable set Ω ⊂ R2 into the set
of matrices as a tensor �eld as it is common.

Symmetric matrices or second order tensors possess an eigenvalue decom-
position with real eigenvalues and mutually orthogonal eigenvectors. Hence, a
decomposition of a symmetric matrix S as

S = Q ·D ·Q>

with a diagonal matrix D and an orthogonal matrix Q is at our disposal. As
a consequence the functional calculus is su�ciently rich to pave the way to
transfer algorithms designed for the processing of real-valued data (functions)
to the setting of matrix-valued data (functions), let us refer to [4].

The visualization of symmetric tensors often makes use of the correspond-
ing quadratic form resulting in ellipses (n = 2) or ellipsoids (n = 3) (see for
example [8]), casting the information about eigenvalues and eigenvectors in an
appealing visual form. Particular visualization methodologies focus on the overall
appearance of the tensor �eld, its topological, global structure, and its connec-
tivity. Prominent is the line integral convolution (LIC) procedure that relies on
the dominant eigenvector, that is the (normalized) eigenvector belonging to the
largest eigenvalue of a symmetric matrix [5]. Clearly this concepts is no longer
applicable if the existence of a real-valued eigenvector cannot be guaranteed
as it is the case for general non-symmetric, hence, mostly non-diagonalizable
matrices. However, tensors of the latter type are of particular interest in many
applications. As a remedy a symmetrization is used leading to a manageable ten-
sor �eld, but at the price of a loss of the information captured in the asymmetric
part.

This is the reason why existing research [1, 7, 9�11] even in the 2D-case is
based on their visualization of asymmetric tensor �elds relying on the decom-
position of an asymmetric tensor into the product of three matrix components,
whose corresponding physical concepts in civil engineering are respectively ex-
pansion/contraction, rotation, and pure shear. But these approaches have their
intricacies and their generalization to dimension n = 3 does not seem to be
straightforward.

In this article, our response to this dilemma is �complexifying� the asymmet-
ric tensors by applying a mapping Ξ from the set of real square matrices Rn×n
into the set of Hermitian tensors Herm(n) := {K ∈ Cn×n : K = K∗} with
n ≥ 2 de�ned by (see also [2, 3])

Ξ :

{
Rn×n −→ Herm(n)
A 7−→ 1

2 (A+A>) + i
2 (A−A

>) .
(1)
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We will elaborate more on this mapping Ξ in Section 2, while we report on the
application of hermitization together with the LIC-procedure to real data sets
in Section 3. A short summary and an outlook is given in Section 4.

2 The conversion process

Since tensors describing general deformation �elds are usually not symmetric,
they are symmetrized leading to a loss of information captured in the asymmetric
part. In this article, those tensors are pre-processed by applying a mapping Ξ
given by (1) in the special case n = 2. Indeed, for any A ∈ R2×2 we have
(Ξ(A))∗ = Ξ(A), where > and ∗ means transpose and conjugate transpose,
respectively. The reason for this pre-processing step is the fact that Hermitian
tensors allow for a rich tensor (or matrix) calculus almost as amenable as in
the case of real symmetric matrices since in both cases the matrices form a real
vector space and are unitarily diagonalizable with real eigenvalues. We point out
that some properties of this mapping and Hermitian tensors also hold for n ≥ 2.

Proposition 1. Ξ maps Rn×n bijectivly into the real vector space Herm(n).

Proof. The mapping Ξ is linear on a �nite dimensional space and has a trivial
kernel. Hence, it is an isomorphism and therefore invertible.

For the sake of brevity we set H = (Hij)i,j=1,2 := Ξ(T ) and assume

H = UΛU∗ , Λ = diag(κ1, κ2)

with real eigenvalues κ1 ≥ κ2. A straightforward reckoning reveals

κ1 = (H11 +H22) /2 +

√
(H11 +H22)

2
/4− (H11H22 −H12H21) (2)

and for the associated major eigenvector (not normalized)

u1 = (H12,−(H11 − κ1))> .

The second component of u1 is real, that is, Im(−(H11 − κ1)) = 0. That means
the imaginary part of this major eigenvector is aligned in the real x-direction.

Remark 1. Note that the eigenvector u1 can be multiplied by an arbitrary con-
stant, say c ∈ C, and still it will be an eigenvector. In fact, we can speci�cally
choose c = eiβ with β ∈ [0, 2π] without changing the original length of the eigen-
vector. That means we could theoretically align the major eigenvector in any
direction (if desired).

3 Numerical results

Note that all the following �gures are created with Matlab 2018a. The line
integral convolution algorithm has been downloaded from the web page
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https://itp.tugraz.at/~ahi/Uni/AppSoft/LIC/

which has been implemented in Matlab by A. Hirczy.
Further, note that the data are generated from two real experiments. Pre-

cisely, the 2D tensor �elds we are dealing with in this section are derived from
the deformation of an object by external forces. The strain tensor is derived from
the gradient of the displacement occurring when external forces to an object are
applied (see [6, Section 2.2.3]). Here, we consider two con�gurations of forces,
indicated by the arrows in Fig. 1, acting on a 2D object of a square-like shape
with coordinates [−0.675, 0.675]× [−0.675, 0.675]. Non-zero forces are acting on
the right side of the square-shaped body, resembling a parabolic force pattern in
the �rst case (data set named �parabolic�), while the pattern is more sinusoidal
in the second case (data set named �sinusoidal �).

First, we will visualize the non-symmetric stress tensor �eld obtained from
the deformation gradient. Precisely, taking the partial derivative of the displace-
ment vector �eld with respect to the material coordinates gives the material
displacement gradient tensor which can be written as F − I where F is the
deformation gradient tensor �eld (see [6, Section 2.1.6 and Section 2.2.3]).

The stress tensor under consideration is a multiplication between a symmetric
stress tensor and the deformation gradient tensor. It is an asymmetric tensor,
thus it might give us some new insight.

Fig. 1. The two experiments parabolic and sinusoidal.

3.1 Non-symmetric stress tensor

Each of the resulting data sets are stress tensor �elds with a (pixel) resolution
of 217× 217. We transform the non-symmetric matrix into a Hermitian matrix
for each pixel and compute the real and imaginary part of the major eigenvector
corresponding to κ1 of (2). In sum, this results in two di�erent vector �elds. From
these vector �elds integral lines are derived through convolution and visualized
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by the LIC procedure. In addition, we plot the major eigenvector �elds in quiver
plots as an alternative representation method for better visual comparison. Note
that we only visualize every �fth vector resulting in a 43×43 resolution to avoid
cluttering. We begin with the parabolic data set.

When the imaginary part is aligned in positive x-direction, then we color the
arrow in green. Otherwise, it is colored red, as shown in Fig. 2. Both the LIC-

LICs of real part
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(a) LIC-plot real-part
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quiver plot of real part

(b) Quiver-plot, real-part

LICs of imag part
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(c) LIC-plot, imaginary-part
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(d) Quiver-plot, imaginary-part

Fig. 2. First column: Graphical representation of the line integral convolution (LIC) of
the real and imaginary part of the eigenvector corresponding to κ1 of (2) for the data
set parabolic having resolution 217 × 217. Second column: Thinned out quiver plots
(43× 43 resolution) of the real and imaginary part of the same eigenvector �elds.

representation and the quiver plot of the real part of the major eigenvector �eld
clearly indicates that the parabolic pattern of forces applied on the right hand side
of the shape creates a corresponding response inside. The anti-symmetric �left-
right� pattern in the imaginary part of the major eigenvector �eld is a striking
feature in the quiver-plot while it is not so clearly discernible in the LIC-picture.
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The later is no surprise since by its very construction the LIC-procedure is not
predisposed to capture the discontinuous behavior of the imaginary part of the
vector components.

In some applications, where tensorial quantities are derived from gradients,
for example, inde�nite matrices may play a role. Using polar decomposition for
symmetrization inevitably causes positive de�niteness of the resulting tensor,
which means an additional loss of information. Nevertheless, even in the case of
positivity, the asymmetry captured in the imaginary part of the Hermitian tensor
reveals discontinuity properties of the data (visible in the quiver plots) that are
independent of the rotational ambiguity mentioned in Remark 1, and hence
they should not be discarded. Whether these discontinuities indicate possible
locations of emerging fractures in materials or real anomalies in �ow patterns
is not yet clear. At this stage of our research a reasonable and authoritative
explanation still eludes the authors.

For the sake of comparison, we show in Fig. 3 the major eigenvector �eld
in its LIC-representation after the non-symmetric stress tensor data have been
symmetrized in each pixel simply by means of A 7→ (A+A>)/2.

LICs of real part
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(a) LIC-plot, symmetrized data
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(b) Quiver-plot, symmetrized data

Fig. 3. Left: Graphical representation of the line integral convolution (LIC) of the
eigenvector corresponding to κ1 of the symmetrization (A + A>)/2 for the data set
parabolic. Right: Thinned out quiver plots (43×43 resolution) of the same symmetrized
real eigenvector �elds.

As expected, the imaginary part is zero and does not contain any informa-
tion, hence we refrain from a graphical representation. A comparison of the ma-
jor eigenvector �eld stemming from the real part of the hermitization versus the
symmetrized tensor �eld reveals very little di�erences in the LIC-representation
as well as in the quiver plot. The reason might be that the non-symmetry in
the original data is not very pronounced and hence the imaginary part is rather
small. Nevertheless, the similarity between hermitization and symmetrized ver-
sion speaks for the reliability of the proposed approach.
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Next, we process and visualize the stress tensor �elds stemming from the
sinusoidal data set as illustrated in Fig. 4.

LICs of real part

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

(a) LIC-plot real-part
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(b) Quiver-plot, real-part

LICs of imag part
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(c) LIC-plot, imaginary-part
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(d) Quiver-plot, imaginary-part

Fig. 4. First column: Graphical representation of the line integral convolution (LIC) of
the real and imaginary part of the eigenvector corresponding to κ1 of (2) for the data
set sinusoidal having resolution 217 × 217. Second column: Thinned out quiver plots
(43× 43 resolution) of the real and imaginary part of the same eigenvector �elds.

The LIC-representation and the quiver plot of the real part of the major
eigenvector �eld reveal an eddy-like structure inside the shape as a response
to the sinusoidal pattern of forces applied on the right border. The LIC image
of the imaginary part of the major eigenvector �eld indicates a complicated
pattern inside the object, and as before, the quiver plot capable of capturing
the discontinuous �left-right� pattern, provides a similar but more discernible
internal structure. A thorough interpretation of such newly discovered pattern
will be the subject of future research.
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For comparison, we show in Fig. 5 the major eigenvector after applying line
integral convolution to data being symmetrized via (A+A>)/2 in each pixel.

LICs of real part
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(a) LIC-plot, symmetrized data
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(b) Quiver-plot, symmetrized data

Fig. 5. Left: Graphical representation of the line integral convolution (LIC) of the
eigenvector corresponding to κ1 of the symmetrization (A + A>)/2 for the data set
sinusoidal. Right: Thinned out quiver plots (43×43 resolution) of the same symmetrized
real eigenvector �elds.

Again, the vanishing imaginary part is not graphically represented. In con-
trast to the �ndings for the previous data set a comparison of the major eigenvec-
tor �eld stemming from the real part of the hermitization versus the symmetrized
tensor �eld reveals signi�cant di�erences in the LIC-representation as well as in
the quiver plot. We attribute this to a more pronounced non-symmetry and a
larger imaginary component if compared with the �rst data set. The data set
sinusoidal suggests that symmetrization indeed destroys a signi�cant portion of
information and that this information not only might be preserved by hermitiza-
tion but also, via its imaginary part, might eventually lead to new interpretations
and insights.

3.2 Deformation gradient tensor

The deformation gradient tensor as a non-symmetric tensor is a meaningful
quantity, but it is not very much studied in the literature. We proceed almost
as before. We extract the deformation gradient tensor �elds for both force con-
�gurations (parabolic and sinusoidal), we use hermitization and then produce
graphical LIC and quiver representations as shown in Figs. 6 and 7.

In case of the data set parabolic the LIC representations of the deformation
gradient tensor �eld and the stress tensor �eld (refer to Fig. 2) look very much
the same if we look at the real part of the major eigenvector �elds. Seemingly,
the same holds true for the quiver plots. However, the imaginary part exhibits
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some di�erences between the deformation gradient �eld and the stress tensor
�eld both in the LIC and the quiver plot, albeit more pronounced in the latter
one, as expected.

LICs of real part
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(a) LIC-plot real-part
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(b) Quiver-plot, real-part

LICs of imag part
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(c) LIC-plot, imaginary-part
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(d) Quiver-plot, imaginary-part

Fig. 6. First column: Graphical representation of the line integral convolution (LIC) of
the real and imaginary part of the eigenvector corresponding to κ1 of (2) for the data
set parabolic having resolution 217 × 217. Second column: Thinned out quiver plots
(43× 43 resolution) of the real and imaginary part of the same eigenvector �elds.

The situation is di�erent for the sinusoidal data set. We note some discrep-
ancies between the deformation gradient �eld, see Fig. 7, and the corresponding
stress tensor �eld, see Fig. 4, in all four representations, namely, LIC- and quiver
plots, real and imaginary parts.

The experiments show, that signi�cant information about a �eld of non-
symmetric tensors is captured in the imaginary parts of its hermitization form,
which solely results from the non-symmetry. The outcome suggests that sym-
metrization of the tensors indeed eliminates information to some extent. The
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LICs of real part
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(a) LIC-plot real-part
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(b) Quiver-plot, real-part

LICs of imag part
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(c) LIC-plot, imaginary-part
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(d) Quiver-plot, imaginary-part

Fig. 7. First column: Graphical representation of the line integral convolution (LIC) of
the real and imaginary part of the eigenvector corresponding to κ1 of (2) for the data
set sinusoidal having resolution 217 × 217. Second column: Thinned out quiver plots
(43× 43 resolution) of the real and imaginary part of the same eigenvector �elds.

imaginary part of the major eigenvector �eld displayed in quiver plots reveals
this information, however, those plots by no means lend themselves to a straight-
forward interpretation; hence more research is needed in this direction.

4 Summary and outlook

There are numerous examples of real second-order tensors in medical imaging
or civil engineering that are symmetric, hence they have an eigendecomposition,
which allows for a rather straightforward processing and analysis. However, the
original tensors encountered in applications might not be symmetric. Their anal-
ysis and processing is much more cumbersome, since SVD and Jordan decom-
position are complicated and sometimes insu�cient substitutes for the lack of
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an eigendecomposition. In order to circumvent this di�culty, the tensors are of-
ten symmetrized, and the asymmetric part is discarded, but this possibly comes
with the price of loosing the information captured in the asymmetry. Rewriting
a non-symmetric tensor as a Hermitian tensor, hermitization for short, allows
to preserve this information since Hermitian matrices possess an eigendecom-
position as well. However, the eigenvectors have complex-valued components,
which means, that the non-symmetry information is mainly cast into the imagi-
nary part of the eigenvectors while its real part is very close to the one stemming
from the symmetrized version. Although the complex eigenvector may be shifted
in phase (i.e. multiplied by eiβ with β ∈ [0, 2π]) the abrupt discontinuous behav-
ior of the imaginary part of the major eigenvector identi�es edges in the tensor
�eld that clearly stem from the asymmetric parts of the tensors.

The numerical results on non-symmetric 2D stress and deformation gradient
tensor �elds clearly indicate that this part of information is indeed relevant,
albeit di�cult to interpret from the quiver and LIC-plots.

In fact, we hope to �nd a better connection of the presented subject to image
processing and mathematical morphology in the future. The discovered discon-
tinuity represents a boundary of a region. If the external force pattern changes,
then this region will change as well leading to a moving boundary. Maybe this
movement can be related to some morphological operation. Knowledge of this
connection might enable us to predict the boundary of a yet unknown force
�eld. Hence, the extensive simulation of the mechanical response of external
forces applied to materials can be replaced by simple morphological operations
to obtain the location of such a discontinuity. This is especially relevant in three
dimensions.

More tests and research e�orts in this direction will be a topic of our future
research.
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