001     910348
005     20240226075322.0
024 7 _ |a 10.1016/j.diagmicrobio.2022.115800
|2 doi
024 7 _ |a 0732-8893
|2 ISSN
024 7 _ |a 1879-0070
|2 ISSN
024 7 _ |a 2128/32351
|2 Handle
024 7 _ |a 36252283
|2 pmid
024 7 _ |a WOS:000878990200001
|2 WOS
037 _ _ |a FZJ-2022-03767
082 _ _ |a 610
100 1 _ |a Lübke, Nadine
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Quantitative analysis of different respiratory specimens on two automated test systems for detection of SARS-CoV-2 RNA
260 _ _ |a Amsterdam [u.a.]
|c 2023
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1667494229_8821
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Molecular testing of SARS-CoV-2 RNA is essential during the pandemic. Here, we compared the results of different respiratory specimens including anterior nasal swabs, pharyngeal swabs, saliva swabs, and gargle lavage samples to nasopharyngeal swabs on two automated SARS-CoV-2 test systems. Samples were collected and tested simultaneously from a total of 36 hospitalized symptomatic COVID-19 patients. Detection and quantification of SARS-CoV-2 was performed on cobas®6800 (Roche) and NeuMoDx™ (Qiagen) systems. Both assays showed reliable detection and quantification of SARS-CoV-2 RNA, with nasopharyngeal swabs showing the highest sensitivity. SARS-CoV-2 RNA concentrations in other respiratory specimens were lower (mean 2.5 log10 copies/ml) or even undetectable in up to 20%. These data clearly indicate that not all respiratory materials are equally suitable for the management of hospitalized patients, especially, in the late phase of COVID-19, when the viral phase subsides and inflammation becomes the predominant factor, making detection of even lower viral loads increasingly important.
536 _ _ |a 5253 - Neuroimaging (POF4-525)
|0 G:(DE-HGF)POF4-5253
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Repges, Katharina
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Menne, Christopher
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Walker, Andreas
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Jensen, Björn-Erik O.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Freise, Noemi F.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Gliga, Smaranda
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Eickhoff, Simon
|0 P:(DE-Juel1)131678
|b 7
|u fzj
700 1 _ |a Bosse, Hans Martin
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Adams, Ortwin
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Timm, Jörg
|0 P:(DE-HGF)0
|b 10
773 _ _ |a 10.1016/j.diagmicrobio.2022.115800
|g Vol. 105, no. 1, p. 115800 -
|0 PERI:(DE-600)2026024-6
|n 1
|p 115800 -
|t Diagnostic microbiology and infectious disease
|v 105
|y 2023
|x 0732-8893
856 4 _ |u https://juser.fz-juelich.de/record/910348/files/1-s2.0-S0732889322001663-main.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:910348
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-HGF)0
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-HGF)0
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-HGF)0
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-HGF)0
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 5
|6 P:(DE-HGF)0
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 6
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)131678
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 7
|6 P:(DE-Juel1)131678
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 8
|6 P:(DE-HGF)0
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 9
|6 P:(DE-HGF)0
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 10
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5253
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-02-04
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-04
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-04
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-08-23
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2023-08-23
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b DIAGN MICR INFEC DIS : 2022
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-23
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-23
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-08-23
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21