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Introduction 

1.1 Aging Process 

In the course of normal aging, cognitive functions progressively decrease, for reviews see 

(Grady, 2012; Hedden & Gabrieli, 2004; Salthouse, 2004). Thereby is the performance 

decline variable among cognitive domains with some showing considerable decreases 

across age (i.e. working and episodic memory, processing speed, reasoning), while others 

remain rather stable (i.e. language functions, emotional processing) (Hedden & Gabrieli, 

2004; Salthouse, 2004). Importantly, across individuals the progression of cognitive 

functions is highly variable with some individuals showing an early and steep age-related 

decline while others maintain their cognitive abilities up to high ages. In fact, the 

variability of performance between individuals increases with ascending age resulting in 

a particularly high heterogeneity during later decades of life (Hedden & Gabrieli, 2004; 

Salthouse, 2004; Ylikoski et al., 1999).  

With regard to the continuing demographic change, the health of older adults is 

becoming increasingly important. Preserving cognitive abilities is crucial for autonomy 

and independent living. In turn, cognitive decline is accompanied by the increasing need 

for support and assistance which will become increasingly challenging regarding the 

aging population (Ulrich, 2004).  

A promising aspect in handling the aging population is to understand potential 

sources of the high inter-individual cognitive variability in older adults. Sources of 

heterogeneity are far from being fully understood, but have been associated with a variety 

of neurobiological substrates including the brain’s cortical structure and function (Raz et 

al., 2005; Whalley et al., 2004). The present work aimed at contributing to this highly 

important issue of identifying potential neurobiological sources for the highly inter-

individual variability in higher age by particularly looking at the relation between age and 

the brain’s functional connectivity (FC), i.e. how different areas of the brain are inter-

connected. In 1.2. previous work on the relation between age and local brain properties 

will be described leading to the promising potential of inspecting the brain’s whole-brain 

FC. 
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1.2 Neurobiology of Aging 

The technological evolution of non-invasive magnetic resonance imaging (MRI) 

enormously increased the possibilities to study the aging process. Here, the human brain 

can be measured in-vivo which has yielded a great abundance of brain research in recent 

years also regarding the field of aging (MacDonald & Pike, 2021). In fact, aging has been 

found to influence the brain in a holistic way showing multiple neurobiological changes 

including the brain’s cortical structure and functional activity, introduced in the 

following. 

Brain Structure 

Structural MRI provides insights into the size of cortical structures, typically measured 

by the volume of grey and white matter. Across the aging process, the brain atrophies 

showing considerable age-related decreases of the grey matter volume (Good et al., 2001; 

Raz et al., 2005; Resnick et al., 2003; Salat et al., 2005). Thereby, previous work on cross-

sectional as well as longitudinal data found the rate of shrinkage to be region specific 

with frontal and temporal regions being more vulnerable as compared to parietal and 

occipital regions (for review see Fjell and Walhovd (2010)). Importantly, not only results 

from cross-sectional studies (Ferreira et al., 2014; Fjell & Walhovd, 2010; Manard et al., 

2016; Seidler et al., 2010), but also longitudinal studies (Aljondi et al., 2019; Oschwald 

et al., 2019) indicate that age-related changes of regional grey matter volume impact the 

performance of the regions’ associated cognitive functions. For example, Ferreira et al. 

(2014) found age-related grey matter volume changes of several brain regions to mediate 

cognitive performance differences in visuospatial functions, reaction time, mental 

flexibility and executive functions. Meanwhile, atrophy rates of e.g. the medial temporal 

cortex are considered as a valid diagnostic marker for mild cognitive impairment states 

(Frisoni et al., 2010; McDonald et al., 2009). A very recent study even found baseline 

grey matter volume differences in frontal and temporal brain regions to predict the 

cognitive performance changes in verbal episodic memory and executive functions over 

a 10-year follow-up period (Aljondi et al., 2019). Although a variety of studies has shown 

that grey matter volume differences indeed relate to cognitive performance differences, 

age-related changes of grey matter seem to not explicitly determine the rate of age-related 

cognitive decline. There is a substantial proportion of seniors which can tolerate greater 

amounts of grey matter changes than others without showing obvious cognitive 

impairments (Bartres-Faz & Arenaza-Urquijo, 2011; Valenzuela & Sachdev, 2006). 
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The Brain’s Functional Activity 

A factor which is sensitive to brain aging and may at least partly account for the different 

relations between cortical structure and performance, is the brain’s functional activity. 

Using functional MRI (fMRI), functional activity can be measured in-vivo and reflects 

differences in the oxygenation of the cortical structures’ regional blood flow which is 

indicative for the activation state of brain regions.  

Measuring functional activity during the performance of a behavioral task (task-

based fMRI) revealed differences in the activation pattern between younger and older 

adults. For example, previous work compared functional activation patterns between 

younger and older adults during the performance of the same memory task and found left 

prefrontal activations in younger adults while older adults activated prefrontal regions of 

both hemispheres (Cabeza et al., 1997; Reuter-Lorenz et al., 2000). Interestingly, in older 

adults, the bilateral activation pattern was associated with better memory performance. 

The additional recruitment of regions located in the contralateral hemisphere led to a 

better maintenance of cognitive performance in the older adults. In fact, common aging 

theories suggest the functional recruitment of additional brain areas to picture a 

compensation strategy in which age-related differences in cortical structure may be 

compensated by functional adaptations (Cabeza et al., 2002; Marstaller et al., 2015; 

Pistono et al., 2021; Reuter-Lorenz & Cappell, 2008). The flexible usage of brain 

structures is thereby considered to countervail cognitive performance decline (Bartres-

Faz & Arenaza-Urquijo, 2011; Stern, 2002; Stern, 2009).  

A limitation of task-based fMRI is that conclusions on functional differences can 

only be related to the specific cognitive function induced local brain activations. As aging 

was shown to affect multiple cognitive functions at once (Hedden & Gabrieli, 2004; 

Salthouse, 2004), the focus on a specific task may underestimate concurrent aging effects 

in other brain regions that are not associated with the specific task performance. 

Furthermore, behavioral functions require the communication, i.e. integration and 

coordination of multiple regions across the whole brain (Bassett & Sporns, 2017; Sporns 

et al., 2004). Therefore, to understand age-related variability of brain function in a more 

comprehensive manner, the capture of simultaneously occurring age effects across the 

whole brain depicts a promising approach.   

A highly prevalent method that omits task-related activations and allows the 

investigation of functional activities across the whole brain is resting-state fMRI (Biswal 

et al., 2010; Margulies et al., 2010). Here, spontaneous low frequency fluctuations of the 
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blood oxygen level dependent (BOLD) signal are measured that occur independent of any 

task performance. Brain regions that share similar time dependent low frequency 

fluctuations in their BOLD signal can be allocated to brain networks (Damoiseaux et al., 

2006; Smith et al., 2009; Yeo et al., 2011). Although functional activity during rs-fMRI 

is not induced by task performances, resting-state networks were found to show a very 

high overlap to task-induced functional activity patterns (Damoiseaux et al., 2006; Smith 

et al., 2009). Hence, with resting-state data, behavioral factors such as age or cognitive 

performances can not only be related to specific task-induced activations but to brain 

function in a holistic perspective capturing simultaneous aging-effects across the whole 

brain (Biswal et al., 2010).  

Collectively, age has been found to influence local properties of cortical structure and 

function. Importantly, behavioral functions also require an integration and coordination 

of multiple regions across the whole brain underpinning the promising potential to 

investigate whole brain interaction and communication across aging rather than focusing 

on specific regions in isolation. Investigating whole brain interactions in relation to any 

behavioral factor requires a deliberate representation and organization of the data which 

is the particular purpose of the concept of a brain connectome, discussed in the next 

chapter.  
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1.3 The Whole-Brain Connectome 

The brain is a complex and highly integrated system in which multiple regions are 

simultaneously coordinated in order to accomplish behavioral tasks (Bassett & Sporns, 

2017). Therefore, modeling the brain as a whole system is highly expedient, i.e. how the 

integration and coordination of regions covering the whole brain are influenced by 

behavioral factors such as age. Investigating a whole brain system in relation to any 

behavioral factor, though, requires a deliberate representation and organization of the data 

which is purposed by the concept of a brain connectome (Bullmore & Sporns, 2009, 2012; 

Sporns et al., 2004). A connectome is understood as the collection of multiple brain 

regions (nodes) and the connections (edges) between them (Fornito et al., 2013). 

Accordingly, the determination of a connectome is first and foremost dependent on the 

definition of brain regions (1.3.1) and the connectivity between them (1.3.2).  

1.3.1 Parcellation 
The definition of nodes is a key factor determining the scale (macro- or microscale) on 

which brain connectivity is examined. Whereas investigations at the microscale focus on 

the basic elements of brain architecture, i.e. neurons and their dendritic and axonal 

projections, analyses on the macroscale address the organization of large-scale pathways 

allowing the incorporation of regions across the whole brain.  

At the macroscale different atlases can be used parcellating the brain into regions 

by using anatomical information such as anatomical landmarks (sulci and gyri) (Desikan 

et al., 2006) or cytoarchitectonic segmentations, the latter considering different 

arrangements of cells, i.e. their distribution and composition across the brain (Amunts et 

al., 2020). Furthermore, the brain can be parcellated into regions by considering its 

functional properties, i.e. the varying functional BOLD activations (Power et al., 2011; 

Schaefer et al., 2018; Yeo et al., 2011). As described above, networks defined on the 

similarity of resting-state BOLD activations were found to show a very high overlap to 

functional activity patterns that are activated during task (Damoiseaux et al., 2006; Smith 

et al., 2004; Yeo et al., 2011). For example, the very well-known and highly established 

functional network parcellation from Yeo et al. (2011) divides the brain into seven distinct 

functional networks. This parcellation scheme was established based on intrinsic resting-

state functional activity “from 500 participants (collated with a 500 subjects replication 

cohort). Networks were delineated by clustering the whole-brain depending on their 

similarity of functional activation profiles over all subjects” (Stumme et al., 2020, page 

3). Of these seven resting-state networks, two networks are associated with processing 
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primary functions including the visual network (VN) related to the processing of visual 

functions and the sensorimotor network (SMN) related to motor performance. 

Furthermore, the parcellation scheme comprises five networks supporting higher-order 

cognitive functions: two networks are associated with attention (dorsal- (DAN) and 

ventral attention network (VAN)), the limbic network (LN) is related to memory 

performance and the frontoparietal network (FPN) with processing executive functions. 

Lastly, the default mode network (DMN) is especially activated when a person rests and 

is internally focused (reflective and emotional processing) and deactivated as the person 

is externally focused, i.e.  due to attention or goal-directed tasks. Hence, parcellations 

based on functional BOLD activations can be used to directly link brain networks to the 

processing of behavioral tasks while regions defined by e.g. anatomical landmarks 

provide no or only little insight to cognitive processing. 

Based on the definition of brain regions (nodes), the connectivity between them (edges) 

can be estimated resulting in a whole brain connectome that indicates how each pair of 

regions is interconnected.  

1.3.2 Connectivity 
There exist multiple possibilities to define connectivity between regions. For example, 

while FC is a statistical dependency defined by the correlation of regions’ functional 

activations, structural connectivity (SC) refers to the white matter fiber tracts physically 

connecting brain regions via many axons between neural cells. Focus of the current work 

was the whole brain FC and its relation to age. As SC is the underlying construct to 

exchange information between regions, the second study additionally addressed the 

relation of whole brain functional to SC. Therefore, procedures of defining FC and SC 

will be explained in more detail.  

Functional connectivity 

FC depicts the time dependent coactivation pattern between regions. The regions’ 

activation pattern is measured by differences in the oxygenation of the regional blood 

flow across time (BOLD signal) indicating the regions’ activation state across time 

(Damoiseaux et al., 2006; Logothetis & Wandell, 2004). For each of the defined regions 

in a connectome, BOLD timeseries can be extracted reflecting the mean timeseries across 

all voxels belonging to the defined region. FC is then defined as the (Pearson’s) 

correlation of regions’ BOLD timeseries, with a high correlation indicating a high shared 

coactivation pattern and therewith a strong functional connection strength between 

regions (Fornito et al., 2010). Besides positive correlations (FCpos), i.e. the coherent 
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activity states across time, brain regions can also be anticorrelated (FCneg). In this case, 

brain regions are depicted by anticyclical activity states meaning that if region A is 

activated, region B is deactivated and vice versa. With negative correlations implying a 

qualitatively distinct type of the brain region’s interaction and these being not yet clearly 

interpretable (Chai et al., 2012; Fornito et al., 2013; Murphy & Fox, 2017), most studies 

omit anti-correlations and focus on the investigation of FCpos. 

Structural connectivity 

SC refers to white matter fiber tracts physically connecting brain regions and measured 

in-vivo using diffusion weighted imaging (DWI) (Bammer, 2003; Hagmann et al., 2006). 

Using DWI, the diffusion properties of water molecules can be characterized for each 

voxel in the white matter. Since water molecules diffuse preferentially in directions free 

of barriers, they move rather along than perpendicular to axons which results in an 

anisotropic diffusion pattern reflecting the orientation of fibers (Beaulieu, 2002; Pierpaoli 

et al., 2001). Based on local (voxel-wise) estimates on the white matter fiber orientations 

white matter pathways can be reconstructed using fiber tracking algorithms that propagate 

streamlines according to the water diffusion preference (Behrens et al., 2003; Jeurissen 

et al., 2014). Thereby, the number of streamlines connecting two regions is indicative of 

the connection strength. 

Based on the compiled connectome which represents the brain as a collection of brain 

regions (nodes) and the connections between them (edges) quantitative parameters can 

be estimated using a graph-theoretical approach allowing the characterization and 

comparison of individual connectomes.  

1.3.3 Characterizing the Whole-Brain Connectome 
As described above, a brain connectome is comprised by multiple nodes and edges. In 

order to compare individual connectomes across subjects or in relation to behavioral 

factors, the multitude of data within the connectome can be compiled to meaningful 

quantitative parameters that optimally characterize the composition of a connectome. 

Therefore, graph-theoretical approaches can be used (Bassett & Sporns, 2017; Bullmore 

& Sporns, 2009, 2012; Fornito et al., 2013). Graph theory is a mathematical approach to 

study complex systems of interacting elements. With regards to brain connectivity, the 

connectome is a graph comprising a number of nodes (elements) and their combining 

edges (interactions). Graphs can be constructed including different levels of information. 

While binary graphs only represent the presence or absence of connections (i.e. 

interactions), weighted graphs additionally give information about the strength of existing 
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connections (Figure 1 i,ii). Furthermore, it can be differentiated between undirected or 

directed graphs, the latter giving additional information on the origin and destination of 

a connection, i.e. whether information transfers from region A to B or vice versa (Figure 

1 iii).  

Figure 1:          Brain connectome visualized as graphs and matrices. 
Columns and rows represent nodes, elements represent connections between pairs of regions: (i) binary 

(symmetric) graph in which lines (A) and painted elements (B) represent existing edges; (ii) weighted 

(symmetric) graph in which thickness of lines (A) and color of elements (B) indicate connections strength; 

(iii) directed (asymmetric) graph in which errors additionally indicate directionality of connections.

Based on a compiled graph, different features of interest can be combined to quantitative 

parameters which allow a characterization and comparison of graphs also in relation to 

behavioral factors (Fornito, 2016; Rubinov & Sporns, 2010). For example, with regards 

to the brain connectome, connectivity parameters can be estimated that combine all 

connections within a given network (Figure 2, solid lines) or those between networks 

(Figure 2, dashed lines). Thereby, intra-network connectivity comprises connections 

between nodes belonging to the same network (Figure 2, A). The connectivity with nodes 

outside its related network can either comprise connections with nodes of any other 

network (inter-network, Figure 2, C) or more specifically with nodes belonging to one 

specific other network (between-network, Figure 2, B). By the determination of intra-, 

inter-, or between-network connectivity, one can consider how many connections exist 

between nodes (binary graph) or even how strong the connections between them are 

(weighted graph). Quantitative parameters that were chosen to be a meaningful 

representation of the brain’s connectome are described in more detail in the study-specific 

methods.  
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A B C

Figure 2:          Visualization of quantitative graph parameters for a brain connectome. 
Dots represent brain regions and are circled if they belong to the same network. Lines represent connections 

between regions with solid lines indicating edges within a network (intra-network, A), dashed lines between 

two specific networks (between-network, B) and dotted lines from network nodes to nodes belonging to 

any other than its respective network (inter-network, C). 

After explaining how a brain connectome can be defined and characterized, focus of the 

next chapter is to review the current state of research regarding the functional brain 

connectome in the aging process, its impact on cognitive performance and the relation to 

sex and the structural connectome (1.4). 
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1.4 Whole-Brain Functional Connectivity 

Results of recent years have not only shown that the whole-brains’ resting-state functional 

connectivity (RSFC) organization measured by rs-fMRI data (functional connectome) is 

indicative for behavioral performances in various diseases including Alzheimer’s disease 

(Lin et al., 2018), Parkinson’s disease (Wu et al., 2009) or epilepsy (Zhang et al., 2010), 

but can also be used to predict gender (Zhang et al., 2018). These results are highly 

promising and hint at an existing relation also between RSFC and age which may 

potentially also explain differences in cognitive performance of older adults. In the 

following sections the current state of research regarding the relation between RSFC and 

age (1.4.1), cognitive performance (1.4.2) and sex (1.4.3) will be given. Furthermore, 

results on a potential relation between RSFC and SC are described (1.4.4) unveiling open 

issues and leading to the aim of the current work.  

1.4.1 Age-related Differences in Functional Connectivity 
In young adults, an efficient functional network configuration associated with high 

cognitive performance is characterized by a balance between connections of regions 

belonging to the same (intra-network RSFC) and other networks (inter-network RSFC) 

(Bullmore & Sporns, 2012; Sadaghiani et al., 2015; Sporns, 2013; Wig, 2017). Across 

the lifespan, however, this modulated and specialized network configuration decomposes 

showing decreasing intra-network RSFC and increasing inter-network RSFC (Betzel et 

al., 2014; Cao et al., 2014; Chan et al., 2014; Ferreira et al., 2016; Jockwitz & Caspers, 

2021; Mowinckel et al., 2012; Tsvetanov et al., 2016; Varangis et al., 2019). Similar 

effects have been identified when comparing groups of younger adults to older adults, 

which is especially applicable to networks involved in higher-order cognitive functions 

such as the DMN, FPN and DAN (Andrews-Hanna et al., 2007; Geerligs et al., 2015; 

Goldstone et al., 2016; Grady et al., 2016; Nashiro et al., 2017; Song et al., 2014; Spreng 

et al., 2016). Hence, while within these networks, RSFC decreases across adulthood, the 

RSFC between networks increases. This leads to the open question of underlying causes 

and a possible behavioral impact. Previous research analyzing age-related RSFC 

differences, mainly included participants across the whole adult lifespan or performed 

group comparisons between younger and older adults. Very recently, a large cohort study 

of only older adults indeed found the age-related shift towards higher network integration 

(Zonneveld et al., 2019). This, however, was not related to the participants cognitive 

performance. As the older age group is particularly vulnerable in terms of cognitive 

decline and depicted by highly variable cognitive performance (Hedden & Gabrieli, 2004; 
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Salthouse, 2004; Singh-Manoux et al., 2012), investigating the interrelation between 

RSFC and cognition in older adults may be highly promising. So far, the older adults 

functional brain network reorganization and its association with cognitive performance is 

still an unsolved issue.  

1.4.2 Relation between Functional Connectivity and Cognitive Performance 
Cognitive abilities are assumed to be optimal in cases of a balanced functional system 

between network segregation and integration, for review see e.g. Wig (2017). Similarly, 

a higher education was found to be associated with a higher segregated network system 

(Marques et al., 2016). Interestingly, the impact of an age-related shift towards a higher 

network integration as described in 1.4.1, is differentially interpreted. On the one hand, 

the dedifferentiation theory considers the age-related shift to represent an impaired 

recruiting of specialized neural mechanisms resulting in performance decline (Chan et 

al., 2014; Colcombe et al., 2005; Goh, 2011; Nashiro et al., 2017; Park et al., 2004). In 

contrast, the compensation theory suggest an over-recruitment of brain regions, i.e. 

additional activations, to represent a compensational response that counteracts the age-

related decline of brain function to maintain successful performance (Cabeza et al., 2002; 

Heuninckx et al., 2008; Marstaller et al., 2015; Reuter-Lorenz & Cappell, 2008; Roberts 

& Allen, 2016). By the use of a multivariate approach, Perry et al. (2017) analyzed single 

RSFC estimates between pairs of regions across the whole brain in older adults (70-90 

years) and found especially connections within primary processing networks to be 

associated with cognitive performance. Studies focusing on the relation between network-

level RSFC and cognitive performance, though, show contradictory results. For example, 

“in a longitudinal approach, Ng et al. (2016) found an age-related decline of intra-network 

RSFC in the DMN as well as in the executive control network which was not found to be 

associated with cognitive performance. Instead, they found a negative correlation 

between inter-network RSFC of the DMN and processing speed.” (Stumme et al., 2020, 

page 2). On the other side, “Persson et al. (2014) found intra-individual RSFC within the 

DMN to remain stable across a period of six years within a group with comparable age 

range. In the same study, they found intra-network RSFC changes of the DMN to be 

positively correlated with memory performance, though, hinting at a relevance for 

cognition beyond age effects. In contrast, in a cross-sectional design, Sala-Llonch et al. 

(2014) found a high regional clustering coefficient of the DMN to be associated with 

worse cognitive performance in verbal and visual memory tasks, pointing at an overall 

negative correlation between cognitive performance and intra-network RSFC.” (Stumme 

et al., 2020, page 2). In summary, in particularly older adults, there exists inconsistent 
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evidence regarding the relation between network-based RSFC differences and cognitive 

performance. 

1.4.3 Sex-related Differences in Functional Connectivity 
A variety of studies indicate that males and females are significantly different in terms of 

their cognitive abilities. For example, while females outperform males in functions 

regarding verbal and episodic memory, males typically perform better in visual memory 

tasks (de Frias et al., 2006; Mansouri et al., 2016; McCarrey et al., 2016). In older adults, 

a very recent work found cognitive profiles to be different for males and females pointing 

at different processing styles to exist also in old age (Jockwitz et al., 2021). With regards 

to these sex-related behavioral differences, differences in the functional brain architecture 

may be assumed. And indeed, FC patterns have been found to show differences between 

males and females (Allen et al., 2011; Joel et al., 2015; Satterthwaite et al., 2015; Tomasi 

& Volkow, 2012b; Zonneveld et al., 2019). For example, while females were found to 

show higher local connectivity density (Tomasi & Volkow, 2012b) and higher intra-

network RSFC, males are depicted by higher inter-network RSFC (Satterthwaite et al., 

2015). Furthermore, considering age-related reorganizations, there have been sex-related 

differences found: “Across the lifespan, females not only exhibited overall higher intra-

network RSFC (Allen et al., 2011), but also showed less age-related decreases of RSFC 

in the DMN and LN (Scheinost et al., 2015). In line with this, Goldstone et al. (2016) 

assumed the age-related functional network reorganization to be different in males and 

females, with males showing more increasing inter-network connectivity and 

simultaneously decreasing intra-network connectivity as compared to females.” (Stumme 

et al., 2020, page 2). Conclusively, previous results hint at RSFC differences between 

males and females in younger adults. Furthermore, the age-related progressions of RSFC 

were found to be sex-specific raising the question of how sex-related differences manifest 

in particularly older adults. 

1.4.4 Relation between Functional and Structural Connectivity 
Given the fact that structural connections represent the underlying construct for functional 

communication, age-related differences in RSFC may be related to differences in SC. In 

fact, SC was also found to change across the aging process. Previous lifespan studies 

found inverted U-shaped trajectories of SC, characterized by integrity increases during 

childhood and adolescence (Imperati et al., 2011; Yeatman et al., 2014), with a peak at 

middle adulthood (about 30-40 years) and followed by decreases at older age spanning 

the whole brain with a particular vulnerability of regions located within the frontal lobe 
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(Antonenko & Floel, 2014; Betzel et al., 2014; Gunning-Dixon et al., 2009; Puxeddu et 

al., 2020; Yeatman et al., 2014; Zhao et al., 2015).  

So far, age-related differences in brain function cannot be directly linked to SC 

decline. While there exist many studies characterizing age-related differences of 

functional and structural networks in isolation, for reviews see (Damoiseaux, 2017; Wig, 

2017; Zuo et al., 2017), much less is known about their mutual relationship in aging. 

Studies investigating this structure-function relation found overall positive correlations 

between SC and RSFC, although the existence of SC is more highly indicative for existing 

RSFC than vice versa, for reviews see (Damoiseaux, 2017; Damoiseaux & Greicius, 

2009; Park & Friston, 2013; Straathof et al., 2019; Wang et al., 2015). In cases of strong 

SC, the RSFC between regions was also found to be high. In turn, RSFC was found to be 

less directly related to SC, in the way that RSFC might also be high between regions that 

are not directly physically connected, potentially explained by indirect connections 

(Greicius et al., 2009; Honey et al., 2009; Jung et al., 2017; Misic et al., 2016; van den 

Heuvel et al., 2009; Zimmermann et al., 2016). Across the adult lifespan, decreasing SC 

was found to be accompanied by functional reorganizations at the network level (Betzel 

et al., 2014). The relation between SC and RSFC was found to strengthen with increasing 

age hinting at RSFC to more strongly rely on stable SC in older adults (Zimmermann et 

al., 2016). This is an interesting aspect especially with regards to the uncertainty of 

potential sources for age-related RSFC differences (1.4.1). Although RSFC differences 

are thought to picture strategic adaptions to maintain cognitive performance on the one 

hand, there is a large quantity of studies showing age-related RSFC reorganizations to be 

associated with worse performance. This raises the question what other factors explaining 

age-related RSFC changes exist, and underpins the need to investigate RSFC in relation 

to SC in older adults.  
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Aim of the Study 

Aim of the current work was to contribute to the highly important prerequisite of 

identifying potential neurobiological sources for the high inter-individual variability of 

cognitive performance in older adults. Thereby, main objective of the present work was 

to investigate the age-related reorganization of RSFC. To the current state of research, a 

great quantity of studies exists pointing at age-related differences of RSFC across the 

adult lifespan. In fact, these age-related differences have been associated with differences 

in cognitive performance. So far, however, the majority of studies focused on RSFC 

changes across the whole adult lifespan. Especially in the older age group, in which 

cognitive decline is particularly variable, evidence of how functional brain networks 

reorganize and how these relate to cognitive performance is inconclusive and will be 

focus of the first study. Furthermore, since previous studies on younger adults indicate 

that sex differences do not only exist in cognitive performance, but also regarding RSFC 

(including different progressions across age), the open question on how the network 

configuration in older adults differs between males and females is additionally addressed. 

Sources of age-related RSFC differences are still a matter of debate. On the one 

hand, it is understood as a compensation strategy to cope neurodegenerative decline by 

functional adaptions to maintain cognitive performance. However, increasing of non-

network specific activations have been associated with worse performance leading to the 

question what other underlying factors there may be explaining the depicted RSFC 

changes. As SC represents the underlying construct for functional communication, a high 

relation between them would be expected. So far, however, very little is known about 

their mutual relationship. Relating RSFC to SC may unveil potential sources for RSFC 

differences in the older population and was therefore focus of the second study. Using a 

multivariate approach considering whole-brain region-wise connectivity estimates of 

both modalities within one statistical model, differences between RSFC and SC were 

assessed that are together characteristic for the older adult’s brain.  

Hence, to contribute to the understanding of the so far unsolved issue of highly inter-

individual variable aging processes in older adults, the current work implemented two 

studies: Within the first study, whole-brain RSFC differences in older adults, its relation 

to sex and potential impact on cognitive performance were investigated. Building upon 

these results, the second study aimed at identifying potential sources of the depicted age-

related RSFC differences and analyzed its relation to SC.
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Data Basis for both Studies 

3.1 Study Population 

Participants of the current work were based on the 1000BRAINS project (Caspers et al., 

2014), a population-based study which was designed to investigate brain structure and 

function. Particularly, 1000BRAINS aims at investigating the brains variability during 

aging as well as its relation to behavioral, environmental and genetic factors. The sample 

of 1000BRAINS (n = 1314, 18-87 years, 582 females) were drawn from the 10-year 

follow-up cohort of the Heinz Nixdorf Recall Study, which is an epidemiological 

population-based study elaborating risk factors for atherosclerosis, cardiovascular 

disease, cardiac infarction, and cardiac death (Schmermund et al., 2002), as well as the 

associated Multi-Generation Study. For 1000BRAINS, there were no exclusion criteria 

other than eligibility for MRI measurements applied as the study aims to characterize 

aging at the level of the general population (Caspers et al., 2014). These included cardiac 

pacemakers, coronary artery stents, surgical implants or prostheses in head or trunk, 

tattoos or permanent make-up on the head or any history of neurosurgery. Further, MR 

imaging was stopped as participants experienced claustrophobia or dental implants were 

found to cause artefacts in the brain images. Prior to the inclusion in 1000BRAINS, all 

subjects gave written informed consent. The study protocol of 1000BRAINS was 

approved by the Ethics Committee of the University of Essen in Germany.  
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3.2 MRI Acquisition 

MRI was performed using a 3T Siemens Tim-TRIO MR scanner with a 32-channel head 

coil (Erlangen, Germany) located at the Forschungszentrum Jülich in Germany. For the 

investigation of SC and RSFC, different sequence images were included in the current 

work (for detailed description of the 1000BRAINS study protocol also see Caspers et al. 

(2014)): “For surface reconstruction, a 3D high-resolution T1-weighted magnetization-

prepared rapid acquisition gradient-echo (MPRAGE) anatomical scan was acquired (176 

slices, slice thickness 1 mm, repetition time (TR) = 2250 ms, echo time (TE) = 3.03 ms, 

field of view (FoV) = 256 × 256 mm2, flip angle = 9°, voxel resolution 1 × 1 × 1 mm3). 

For rs-fMRI, a BOLD gradient-echo planar imaging (EPI) sequence was with 36 

transversally oriented slices (slice thickness 3.1 mm, TR = 2200 msec, TE = 30 msec, 

FoV = 200 × 200 mm2, voxel resolution 3.1 × 3.1 × 3.1 mm3) was used, lasting for ~11 

minutes and producing 300 volumes. During rs-fMRI image acquisition, participants 

were instructed to keep their eyes closed, be relaxed, let their mind wander and not fall 

asleep. The latter was assured by post-scan debriefing.” (Stumme et al., 2020, page 3). 

And lastly, diffusion tensor images were acquired using the following parameters: (60 

directions, HARDI subset) EPI, TR = 6.3s, TE = 81ms, 7 b0-images (interleaved), 60 

images with b = 1000s/mm2, voxel resolution = 2.4×2.4×2.4mm3; HARDI (120 

directions) EPI, TR = 8s, TE = 112ms, 13 b0-images (interleaved), 120 images with b = 

2700s/mm2, voxel resolution = 2.4×2.4×2.4mm3. 
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Study 1: Functional Network Reorganization 

With the first study, the current work aimed at assessing systematic functional network 

differences in older adults, how these differ across age and sex and potentially relate to 

cognitive performance differences. With the results it was targeted to contribute to the 

understanding what neurobiological sources there may be for the highly variable age-

related performance decline in older adults. 

In the current work, a large sample of older adults from the 1000BRAINS study 

(Caspers et al., 2014) was used to disentangle the interplay of RSFC differences within 

and between functionally defined whole-brain networks. For the quantification of whole-

brain RSFC differences (Bassett & Sporns, 2017; Biswal et al., 2010; Bullmore & Sporns, 

2009, 2012; Rubinov & Sporns, 2010) a graph-theoretical approach was utilized 

(described in 1.3.3). As suggested by previous research (1.4.1), overall intra-network 

decreases and between-network increases of RSFC were expected. Given the non-

conclusive evidence on cognition (1.4.2), only a tentative hypothesis was made expecting 

intra-network RSFC being positively related to cognitive performance. To allow for a 

holistic perspective, exploratory analyses on this relation was carried out. This was also 

favored to analyze sex-related differences, as evidence in older subjects is yet 

inconclusive (1.4.3).  
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4.1 Material & Methods 

4.1.1 Sample 
At the time of beginning of the first study, “the sample of 1000BRAINS comprised 951 

older adults (aged 55-87 years) of one measurement time point, as relevant for the current 

cross-sectional study design. Of these 951 participants, 179 were excluded due to the 

following reasons: Participants with more than three missing values of the 

neuropsychological assessment” (Stumme et al., 2020, page 3) (n = 46; see section 4.1.5 

for further description) were excluded. Further, participants with preprocessing failure of 

structural T1 and/or functional imaging data were excluded (n = 101; e.g. artifacts in 

structural scans, problems during normalization procedure or denoising, see section 4.1.2 

for further description). “Additional 21 subjects did not pass a dedicated quality control 

of the preprocessed functional data checking for potential misalignments and severe 

intensity drop-outs (n = 21). Lastly, 11 participants with indication for potential cognitive 

impairment (score of eight or lower according to the dementia screening test DemTect 

(Kalbe et al., 2004)) were additionally excluded (n = 11). In total, the current study 

comprises a sample of n = 772 subjects.” (Stumme et al., 2020, page 3) (see Table 1). 

Table 1:           Sample distribution of the first study. 
Whole group, female and male regarding age, education and the risk of having dementia: mean (sd). 

% Age (years) Education DemTect 
total 100 67.1 (6.7) 6.5 (2.0) 14.9 (2.3) 

female 45.5 66.5 (6.6) 5.9 (1.8) 15.5 (2.3) 
male 54.5 67.5 (6.7) 6.9 (1.9) 14.4 (2.3) 

4.1.2 Image Preprocessing 
Functional “image preprocessing was performed using FSL [FMRIB Software Library: 

http://www.fmrib.ox.ac.uk/fsl (Jenkinson et al., 2012)]. For each participant, the 

functional images were motion corrected and coregistered to the individual anatomical 

scan using FMRIB's Linear Image Registration tool [MCFLIRT and FLIRT (Jenkinson 

et al., 2002)]. Afterwards, all functional images were slice timing corrected [slicetimer 

(Parker et al., 2017)], brain extracted [BET (Smith, 2002)], intensity normalized and 

spatially smoothed (5mm at FWHM) [SUSAN (Smith & Brady, 1997)]. Additionally, 

[Independent Component Analysis-based] Automatic Removal Of Motion Artifacts 

[ICA-AROMA (Pruim et al., 2015)] was applied. ICA-AROMA is a data-driven method 

to identify and remove motion-related independent components from functional MRI 

data. According to current suggestions for minimizing the relationship of motion and 
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RSFC (Burgess et al., 2016; Ciric et al., 2017; Parkes et al., 2018), AROMA was 

combined with global signal regression in the current study. Lastly, all rs-fMRI images 

were bandpass filtered (0.01 – 0.1 Hz) and registered to the standard space template (MNI 

152) using the Nonlinear Image Registration tool [FNIRT (Jenkinson & Smith, 2001)].”

(Stumme et al., 2020, page 3). Based on the preprocessed mean AROMA functional data,

quality control was performed to detect potential misalignments by performing the “check

sample homogeneity using standard deviation (SD) across sample” function provided by

the Computational Anatomy Toolbox [CAT12 (Gaser & Dahnke, 2016)]. Participants

that were considered as outlier were additionally manually checked and excluded from

further analyses as the individual image did not match the MNI152 template. AROMA

particularly focuses on the correction of intensity artifacts that are induced by head

motion. To further check for each participant volume-wise severe intensity dropouts, the

established algorithm by Afyouni and Nichols (2018) was performed. Here, p-values for

spikes (called DVARS) on the already preprocessed functional data are generated

indicating volumes that show corrupted spikes. Participants were excluded as 10% of

their functional volumes were detected as dropouts.

4.1.3 Functional Connectome 
To analyze RSFC within established functional networks, the cortical parcellation of Yeo 

et al. (2011) was used. In fact, building upon the 7-network parcellation distinguishing 

the known functional resting-state networks previously described in 1.3.1 (VN, SMN, 

DAN, VAN, LN, FPN and DMN), Yeo et al. (2011) additionally subdivided the brain 

into a 17-network parcellation scheme depicting more fine-grained classification of brain 

regions. In fact, the 17-network parcellation provides 83 separate regions (with cluster 

sizes >100 voxels, collapsed over hemispheres), that in turn can be allocated to the 7-

network scheme (Figure 3, additional information on label names and MNI-coordinates 

can be found in Supplementary Table 1). “Since the transformation from subject to 

standard space results in interindividual variance of cluster configuration, all regions of 

interests (ROIs) were eroded using FSL [fslmaths -ero (Smith et al., 2004)] so that voxels 

close to boundaries with less confidence of network affiliation were discarded.” (Stumme 

et al., 2020, page 3). 
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Figure 3:          Functional network parcellation in accordance to Yeo et al. (2011). 
(VAN = violet, SMN = blue, DAN = green, VAN = pink, LN = yellow, FPN = orange, DMN = red). 

For FC, mean time series spanning 296 time points (discarded first four of in total 300 

volumes) were extracted node-wise [fslmeants (Smith et al., 2004)], i.e. from each 

defined brain area of the preprocessed rs-fMRI data by averaging the time series across 

all voxels corresponding to that node. Pearson’s product-moment correlation was used to 

estimate the RSFC between nodes by correlating the respective average BOLD time 

series. Performing this for each pair of node resulted in a symmetric n*n matrix (n = 83 

nodes), each entry (i.e. edge) representing a Pearson’s correlation coefficient between the 

respective nodes. In RSFC, correlations are based on minimal BOLD activity fluctuations 

enhancing the possibility that edges may reflect measurement noise rather than true 

signal. Therefore, an additional preprocessing step was included to minimize the amount 

of edges that are caused by noise: “the observed timeseries were randomized by taking 

its Fourier transform, scrambling its phase and then inverting the transform (Zalesky et 

al., 2012). This procedure was repeated 1,000 times and followed by a permutation test 

(non-significant edges at p > .05 were discarded). The subject-wise elimination of non-

significant edges may potentially result in inter-individually different network sizes (i.e. 

different overall amount of edges). Previous research has stated that systematic network 

differences calculated by graph-theoretical parameters can be distorted by differences in 
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the absolute amount of edges in a given network (van Wijk et al., 2010). Therefore, 

thresholding methods are frequently performed, i.e. reducing the total amount of edges to 

a set that reach a certain absolute or relative threshold. However, this practice might be 

prone to false-negatives and may even result in systematic differences of overall RSFC, 

leading to a more random network characterization in networks with a low overall RSFC 

(van den Heuvel et al., 2017). Therefore, the current study omitted thresholding methods, 

but instead focused on network parameters that are not dependent on the varying absolute 

amount of edges, but additionally address feasible differences resulting from different 

network size.” (Stumme et al., 2020, page 4). 

By applying a Fishers r-to-z transformation, the adjacency matrix was transformed 

into z-scores. Lastly, integrating positive and negative correlations into the estimation of 

connectivity parameters (i.e. strength value, see 4.1.4) may lead to a mutual suppression 

by canceling each other out. Therefore, separated RSFC matrices were generated, one 

only including positive correlations (RSFCpos) and the second one only including absolute 

values of negative correlations (RSFCneg).  

4.1.4 Network Parameters 
The software bctpy (a python version of the Brain Connectivity Tollbox, brain-

connectivity.toolbox.net) with “network parameters as defined in Rubinov and Sporns 

(2010) was used to quantify the FC of networks. First, the whole-brain density was 

determined. This density represents the ratio of present edges to possible edges between 

all pairs of nodes, whereby the edge weights are ignored. The network density is an 

indicator for inter-individually varying network sizes and can be used in order to preclude 

that systematic differences in network parameters found are not solely based on different 

network sizes. Second, three different RSFC parameters were calculated for each of the 

seven networks, all based on the estimation of strength values. The strength of a node is 

computed by the sum of connectivity weights attached to that node. The strength value 

has been shown to represent a robust and reliable measure for network quantification as 

it also enables accurate identification of subjects from a large group on the basis of their 

connectivity matrices alone (Finn et al., 2015). Additionally, it is not distorted by varying 

amounts of edges, but captures these as valuable subject-dependent network differences.” 

(Stumme et al., 2020, page 4). Composite intra-, inter- and between-network RSFC were 

calculated for each participant and are defined as follows, illustrated in Figure 2: 

(i) Intra-network RSFC: sum of strength values from each node to all nodes

within its related network,
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(ii) Inter-network RSFC: sum of strength values from each node to all nodes

outside the related network,

(iii) Between-network RSFC: sum of connections between two specific networks.

Furthermore, a combined quantitative parameter was calculated, capturing the intra-

network RSFC in relation to the inter-network RSFC. This ratio score can be understood 

as an index of the network’s segregation (also see Chan et al. (2014)) and is quantified as 

follows: 

While a ratio-score of 1 is indicative for a maximally high network segregation (high 

intra- and low inter-network RSFC), a ratio-score of -1 characterizes a maximally high 

network integration (low intra- and high inter-network RSFC). A score of zero represents 

a balanced system.  

4.1.5 Neuropsychological Variables and Principle Component Analysis 
“All subjects underwent comprehensive neuropsychological assessment addressing a 

wide range of cognitive functions including the domains of attention, episodic- and 

working memory, executive functions, as well as language functions (for test description 

see also Caspers et al. (2014) and Jockwitz et al. (2017) as well as Table 2). In the case 

of one, two or three missing values in the neurological assessment (>3 missing values led 

to exclusion, see above), the missing values were replaced by the median, which was 

calculated separately for sex and age decades (55-64 years, 65-74 years, 75-85 years). In 

total, 26 out of the 772 participants included in the current analysis had at least one 

missing value.  

Principal component analysis (PCA) was applied to reduce and classify the 

neuropsychological data. After transforming all variables into z-scores, data was tested 

on suitability for PCA, using the Kaiser-Meyer-Olkin (KMO) index (measures the degree 

of common variability), which reached a value of .909 and thus indicated suitability of 

the data for PCA. PCA was consecutively used to extract neuropsychological 

components. Finally, Varimax rotation was applied to enhance the interpretability of the 

extracted components (Abdi, 2003). All steps were performed using IBM SPSS Statistics 

24 (http://www-01.ibm.com/software/de/analytics/spss/).” (Stumme et al., 2020, page 5). 
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Table 2:           Test descriptions of all neuropsychological tests used within the first study. 
Further descriptions can also be found in Caspers et al. (2014), Jockwitz et al. (2017) as well as Stumme et al. (2020). Factor loadings and components are results of the performed 

PCA (described in 4.2.3). Bold printed numbers indicate the according component affiliation. 

Test (Reference) Function mean(SE) Description Factorloadings 
1 2 3 Components 

Regensburger Wortflüssigkeitstest 
(Aschenbrenner et al., 2000)  

Semantic verbal 
fluency 

24.10 (0.24) Total number of generated words belonging to the category “Berufe (job)” 
(2min.)

0.749 0.107 0.026 

Verbal Memory 
& Fluency 

 

Regensburger Wortflüssigkeitstest 
(Aschenbrenner et al., 2000) 

Phonemic verbal 
fluency 

18.74 (0.23) Total number of generated words beginning with the letter B (2min.) 0.681 -0.072 0.226 

Verbaler Gedächtnistest  
(Lux et al., 2012)  

Verbal episodic 
memory 

41.8 (0.38) Total number of free recalled words from a list comprised by 15 words 
(sum score of 5 trails) 

0.573 0.133 0.189 

Wortschatztest 
(Schmidt & Metzler, 1992) 

Vocabulary 31.06 (0.17) Total number of correctly identified real words within rows of pseudo 
words 

0.554 0.022 0.483 

Fünf-Punkte-Test (Jülich version; 
similar to: Regard et al., 1982)  

Figural fluency 26.69 (0.27) Total number of unique designs created by connecting 5 dots (3min.) 0.494 0.41 0.185 

Block-Tapping-Test 
(Schelling, 1997) 

Visual spatial 
working memory 

5.44 (0.03) Total number of correctly repeated blocks given in a sequence (sum score 
forward) 

-0.087 0.682 0.088 

Visual pattern (Jülich version; similar 
to: Della Sala et al., 1997) 

Visual working 
memory 

7.79 (0.06) Total number of correctly memorized matrix patterns of black and white 
squares with increasing complexity 

0.131 0.653 0.298 

Block-Tapping-Test 
(Schelling, 1997) 

Visual spatial 
working memory 

4.70 (0.04) Total number of correctly repeated blocks given in a sequence (sum score 
backward) 

0.043 0.632 0.127 

Benton-Test  
(Benton et al., 2009) 

Figural memory 16.29 (0.29) Total number of errors made during the free recall of 20 previously 
presented figures 

0.421 0.53 0.39 

Alters-Konzentrations-Test 
(Gatterer, 2008) 

Selective attention 34.20 (0.39) Time (sec.) to cancel target figures out of similar distractor figures 0.48 0.526 0.024 

Trail Making Test (part A) (taken 
from CERAD-Plus; Morris et al., 
1989) 

Processing speed 39.82 (0.49) Time (sec.) to connect randomly arranged numbers in ascending order (part 
A) 0.447 0.512 -0.039

Leistungsprüfungssystem 50+ 
(Subtest 3) (Sturm et al., 1993) 

Problem solving 20.78 (0.18) Total number of correctly tagged irregularities in serials of geometric 
figures (5min.) 

0.373 0.489 0.46 

Zahlennachsprechen (from 
Nürnberger Alters-Inventar; Oswald 
and Fleischmann, 1997)  

Verbal short term 
memory 

6.1 (0.04) Total number of correctly repeated sequences of numbers (sum score 
forward) 

0.041 0.045 0.741 

Zahlennachsprechen (from 
Nürnberger Alters-Inventar; Oswald 
and Fleischmann, 1997) 

Verbal working 
memory 

4.7 (0.04) Total number of correctly repeated sequences of numbers (sum score 
backward) 

0.094 0.208 0.691 

Trail Making Test (part B-A) (taken 
from CERAD-Plus; Morris et al., 
1989) 

Concept shifting 53.52 (1.33) Time difference (sec.) between connecting alternately numbers and letters 
in ascending order (part B) and (part A)  

0.371 0.223 0.484 

Farb-Wort-Interferenztest (Jülich 
version; similar to: Bäumler, 1985; 
Stroop, 1935) 

Susceptibility to 
interference 

43.21 (0.82) Time difference (sec.) between naming the ink in which color words were 
printed (part 3) and naming the color of squares (part 2) 

0.323 0.204 0.394 

Verbal 
Memory & 

Fluency 

Non-verbal 
Memory & 
Attention 

Verbal 
Working 

Memory & 
Executive 
Functions 
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4.1.6 Statistical Analysis 
First, to test how RSFC is related to age as well as sex, Multivariate Analysis of 

Covariance (MANCOVA) were performed as implemented in IBM SPSS Statistics 23 

(http://www-01.ibm.com/software/de/analytics/spss/). Thereby, four separate linear 

models were employed with RSFC estimates as dependent variables (either intra-, inter-, 

between-network RSFC or the ratio-scores of the given networks), and age as well as sex 

as independent predictors (corrected for education level). “To account for potential 

interactions between the predictor variables, interaction effects between age and sex as 

well as education on all RSFCpos values were tested. All results were considered 

significant at p < 0.05. Pairwise comparisons within each MANCOVA were Bonferroni-

corrected for multiple comparisons (intra-, inter-network RSFCpos and ratio-scores: p = 

0.05 / 7 networks = 0.007; between-network RSFCpos: p = 0.05 / 21 network combinations 

= 0.002). To additionally test robustness of effects a bootstrap validation was performed 

(1,000 bootstrap samples, 95% confidence interval [(CI)]).” (Stumme et al., 2020, page 

5). For significant age effects, regression analyses were conducted to obtain slope 

estimates and variance information.  

As post-hoc analyses the relation between RSFCpos and cognitive performance 

was assessed. Therefore, “partial correlations between all RSFCpos values (7 intra- and 

inter-, 21 between-network and 7 ratio-scores) and each cognitive performance domain 

were calculated, correcting for age, sex, education as well as the two remaining cognitive 

domains, respectively. To test the robustness of correlations between cognitive 

performance and RSFCpos a bootstrap validation was performed (1,000 bootstrap samples, 

95% CI). In cases where both, associations of RSFCpos with a cognitive component 

(results derived from partial correlations, p < 0.05) as well as with age (results derived by 

previous MANCOVAs, p < 0.05) were found, a mediation analysis was conducted to test 

whether these concurrent effects may also be significantly related [(Figure 4)]. 

Specifically, it was tested to what extent the age-related decline in cognition is mediated 

by the age-related differences in RSFCpos (covariates: sex, education and the two 

remaining components, respectively). Comparably, for all RSFCpos values that where 

associated with cognitive performance and additionally showed sex-related differences, 

it was tested whether sex-related differences in RSFCpos significantly mediate the effect 

of sex on cognition (corrected for age, education and the two remaining cognitive 

components, respectively). Mediation analyses were performed using PROCESS (Hayes 

& Preacher, 2014), implemented in IBM SPSS Statistics 23. The significance of indirect 

effects was computed using bootstrapping procedures. For 1,000 bootstrapped samples 
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unstandardized indirect effects were generated and the 95% CI was computed by 

determining the indirect effects at the 2.5th and 97.5th percentiles [(Table 5)].” (Stumme 

et al., 2020, page 5). 

Figure 4:          Visualization of the mediation analyses performed. 
Statistical approach to test die mediation effect of RSFC differences (M) on the relation between age or sex 

(X) and cognition (Y).

Subsequently, also the effect of age and sex on negative strength values was investigated, 

i.e. anticorrelations (RSFCneg), using the same procedure as described for RSFCpos.
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4.2 Results 

In the first study, the older adults’ whole-brain functional network architecture and its 

relation to age and sex as well as its potential impact on cognitive performance was 

assessed. Before inspecting any network parameters, the network density was related to 

age (F = 0.909, p = 0.341), sex (F = 1.041, p = 0.308) and the educational level (F = 2.376, 

p = 0.124) to preclude that systematic differences in network parameters found are solely 

based on different network sizes. With the results revealing no significant relations, all 

subsequently reported effects can be attributed to systematic network differences rather 

than the network sizes per se. And indeed, results revealed age to be associated to not 

only intra- and between-network RSFCpos but also the ratio of intra- and inter-network 

RSFCpos (described in 4.2.1). Importantly, age-related differences in RSFCpos were found 

to mediate the cognitive performance differences in older adults (described in 4.2.2). 

Regarding sex-related differences, results indicate males and females to indeed exhibit a 

diverging RSFCpos network architecture (described in 4.2.3). All significant effects 

regarding the relation between RSFC and age, its association to sex as well as cognitive 

components are collectively visualized in Figure 5. To complete the understanding of 

whole-brain RSFC differences, results on RSFCneg are additionally described in relation 

to the results on RSFCpos at the end of each section.  

Further worthy of note, in Supplementary Material all network-wise RSFCpos&neg
estimates (standard error, SE) are denoted for males, females and the whole group 

(Supplementary Tables 2, 3). Further, additional information can be found regarding the 

effects between education and RSFCpos (Supplementary Table 4). Lastly, the effects 

between RSFCneg and age and sex are denoted in Supplementary Table 5, and visualized 

in Supplementary Figures 1 and 2, respectively.  
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Figure 5:          Schematic visualization of (A) age-related differences, (B) sex differences and (C) 
cognitive performance dependent differences of RSFCpos.  

Circles stand for differences of intra-network RSFCpos, lines for between-network RSFCpos and crosses for 

inter-network RSFCpos differences. Dashed lines = negative correlations, solid lines = positive correlations. 

For ratio-scores, the arrows indicate the direction of correlation: down = negative correlation, up = positive 

correlation. Pink represent higher values in females, blue in males. Purple represents correlations with the 

VERBAL MEMORY & FLUENCY, green with the NON-VERBAL MEMORY & ATTENTION, orange 

with VERBAL WORKING MEMORY & EXECUTIVE component.  
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4.2.1 Relations between RSFC and Age 
In older adults, the whole-brain functional connectome was found to differ across age. 

Main effects (MANCOVA) revealed the older adults chronological age to not only be 

related to the connectivity within networks (intra-network RSFCpos: F = 6.161, p < .001), 

but also the connectivity between networks (between-network RSFCpos: F = 2.731, p < 

.001) as well as the rate of networks segregation (RSFCpos ratio-score: F = 5.222, p < 

.001). Importantly, age-related RSFCpos differences seem to be network specific with 

primary processing networks showing different age-relations as compared to higher-order 

networks. In the following section aging effects are more specifically described for the 

intra-network RSFC, inter-network RSFC, the between-network RSFC as well as the 

ratio-scores. All results regarding the age – RSFCpos relations are denoted in Table 3 and 

visualized in Figure 5A.  

Table 3:           Results of all relations between network-wise RSFCpos estimates and age. 
Regression coefficients (ß) and from the MANCOVAs derived p-values and F-stats. Significant values 

(intra-, inter-network RSFCpos, ratios < 0.007 and between-network RSFCpos < 0.002 after Bonferroni-

correction), that additionally survived post-hoc bootstrap validation are indicated by an asterisk and 

highlighted in grey. For significant effects, also effect sizes (eta-square) are denoted. 

Age – RSFC 
VN SMN DAN VAN LN FPN DMN 

Within ß 
p 
F 

eta 

-.125 
<.001 * 
12.228 

.016 

-.163 
<.001 * 
21.056 

.027 

-.073 
.042 

4.161 

-.057 
.115 

2.492 

.021 

.569 
0.324 

.009 

.809 
0.059 

.051 

.154 
2.033 

Inter ß 
p 
F 

-.032 
.382 

0.765 

.061 

.093 
2.822 

.059 

.102 
2.676 

.071 

.047 
3.946 

.055 
.13 

2.303 

.092 

.011 
6.515 

.075 

.037 
4.385 

Ratio ß 
p 
F 

eta 

-.056 
.119 
2.44 

-.193 
<.001 * 
29.561 

.037 

-.097 
.007 

7.059 
.009 

-.095 
.008 

7.227 

-.009 
.801 
.064 

-.071 
.049 

3.893 

-.010 
.775 
.081 

Between 
VN 1 

SMN ß 
p 
F 

eta 

-.127 
<.001 * 
12.502 

.016 

1 

DAN ß 
p 
F 

-.037 
.301 

1.072 

-.036 
.322 
.98 

1 

VAN ß 
p 
F 

.039 

.284 
1.147 

.072 

.046 
3.993 

.049 

.175 
1.844 

1 

LN ß 
p 
F 

eta 

.026 

.477 
0.505 

.140 
<.001 * 
15.458 

.065 

.116 
.001 * 
10.527 

.064 

.076 

.036 
4.404 

1 

FPN ß 
p 
F 

eta 

.055 

.127 
2.33 

.112 
.002 * 
9.716 
.012 

.046 

.204 
1.619 

.011 

.768 
0.087 

-.040 
.264 

1.249 

1 

DMN ß 
p 
F 

-.006 
.862 
.03 

.034 

.345 

.893 

.039 

.276 
1.189 

.046 

.201 
1.639 

.002 

.947 

.004 

.104 

.004 
8.457 

1 
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With increasing age, the RSFCpos within networks (intra-network) was found to decrease. 

Specifically, on network level this effect was significant for the VN (F = 12.228, p < .001; 

ß = -.125, SE = 0.11, lCI = -.061, uCI = -.016) and SMN (F = 21.056, p < .001; ß = -.163; 

SE = 0.017, lCI = -.110, uCI = -.048), visualized in Figure 6. 

Figure 6:          Scatterplots of significant relations between age and intra-network RSFCpos estimates. 
The visualized results (z-scores) showed a significant age effect and additionally survived post-hoc 

bootstrap validation. 

Overall inter-network RSFCpos, i.e. the connection of one network to the rest of the brain, 

was not related to age when correcting for multiple comparisons (F = 1.964, p = .057)., 

Looking at the connectivity between certain networks more specifically, though, 

significant relations with age appeared. In contrast to age-related decreases in intra-

network RSFC, the overall between-network RSFCpos was positively correlated with age 

indicating a higher connectivity between networks in older adults. Specifically, this effect 

pertained to the connectivity between the SMN, the FPN (F = 9.716, p = .002; ß = .112; 

SE  0.039, lCI = .031, uCI = .204) and the LN (F = 15.458, p < .001; ß = .141; SE = 0.011, 

lCI = .020, uCI = .065) and additionally to the between-network RSFC of the DAN and 

the LN (F = 10.527, p = .001; ß = .117; SE = 0.012, lCI = .031, uCI = .064), visualized in 

Figure 7. Remarkably, the only negative age – connectivity relation pertains to the 

connection between the two primary processing networks (VN and SMN) indicating age-

related connectivity decreases between them (F = 12.502, p < .001; ß = -.127; SE = 0.027, 

lCI = -.131, uCI = -.042). 
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Figure 7:          Scatterplots of significant relations between age and between-network RSFCpos estimates. 
The visualized results (z-scores) showed a significant age effect and additionally survived post-hoc 

bootstrap validation. 

Combining the connectivity within and between networks to a ratio-score revealed a 

negative correlation with age. A decreasing ratio-score indicates a shift of RSFCpos from 

segregated networks to more integrated networks which is depicted by an increasing 

predominance of connectivity between networks rather than within networks. This effect 

particularly applied to the SMN (F = 29.561, p < .001; ß = -.193, SE = 0.001, lCI = -.005, 

uCI = -.002, visualized in Figure 8) and DAN (F = 7.227, p = .007; ß = -.097, SE = 0.001, 

lCI = -.003, uCI = 0). However, the latter did not remain significant after bootstrap 

validation.  

Figure 8:          Scatterplots of significant relations between age and the network’s RSFCpos ratio scores. 
The visualized results (z-scores) showed a significant age effect and additionally survived post-hoc 

bootstrap validation.  

As of note, the inverse effects for RSFCneg were found as compared to RSFCpos: networks 

that depicted by age-related decreases in RSFCpos, show age-related increases in RSFCneg 
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and vice versa (Supplementary Table 5, visualized in Figure 5A and Supplementary 

Figure 1). This particularly pertained to the intra-network RSFC of the VN and SMN and 

the VN-SMN between-network RSFC, respectively. Furthermore, age-related increases 

of RSFCneg were found within the DAN and FPN as well as between the LN, FPN and 

DMN.

4.2.2 Relations between RSFC and Sex 
With regards to sex, results revealed males and females to have significant differences in 

their whole-brain RSFC architecture (Table 4 and visualized in Figure 5B and Figure 9). 

In fact, differences regard to the connectivity within networks (intra-network RSFCpos: F 

= 2.960, p = .005) as well as the networks ratio-scores, i.e. indicating how segregated a 

network is (F = 3.465, p = .001).  

Table 4:           Results of all relations between network-wise RSFCpos estimates and sex. 
From the MANCOVAs derived p-values and F-stats. Significant values (intra-, inter-network RSFCpos, 

ratios < 0.007 and between-network RSFCpos < 0.002 after Bonferroni-correction), that additionally 

survived post-hoc bootstrap validation are indicated by an asterisk and highlighted in grey. For significant 

effects, also effect sizes (eta-square) are denoted.  

Sex - RSFC 
VN SMN DAN VAN LN FPN DMN 

Within p 
F 

eta 

.983 
0 

.963 
0.002 

.937 
0.006 

.001 * 
10.408 

.013 

.016 
5.861 

.106 
2.624 

.004 * 
8.335 
.011 

Inter p 
F 

eta 

.048 
3.923 

<.001 * 
13.564 

.017 

.044 
4.065 

.098 
2.738 

.744 
0.107 

.615 
0.253 

.325 
0.971 

Ratio p 
F 

eta 

.158 
1.995 

.022 
5.281 

.279 
1.174 

<.001 * 
15.938 

.02 

.041 
4.206 

.116 
2.476 

.011 
6.544 

Between 
VN 1 

SMN p 
F 

eta 

.345 
0.893 

1 

DAN p 
F 

eta 

.271 
1.214 

.014 
6.053 

1 

VAN p 
F 

eta 

.824 
0.05 

.18 
1.802 

.931 
0.008 

1 

LN p 
F 

eta 

.523 
0.409 

.775 
0.082 

.742 
0.109 

.307 
1.045 

1 

FPN p 
F 

eta 

.039 
4.266 

.001 * 
10.432 

.013 

.639 
0.221 

.481 
0.498 

.506 
0.442 

1 

DMN p 
F 

eta 

.003 
8.677 

.001 * 
10.364 

.013 

.020 
5.392 

.055 
3.704 

.522 
0.411 

.220 
1.505 

1 
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Regarding the intra-network RSFCpos, females were found to have significantly higher 

connectivity within the VAN (F = 10.408, p = .001, lCI= -5.953, uCI= -1.605) as well as 

within the DMN (F = 8.335, p = .004, lCI = -8.772, uCI = -1.814). Females were 

additionally found to show a significantly higher ratio of the VAN, indicating a more 

segregated network in females (F = 15.938; p < .001, lCI = -.076, uCI = -.027). In contrast, 

the functional network architecture of males was found to be depicted by a significantly 

higher inter-network RSFCpos of the SMN indicating a higher integration of the SMN in 

males (F = 13.564, p < .00, lCI = 1.347, uCI = 3.982). Looking at the RSFCpos between 

networks more specifically, higher RSFCpos in males particularly pertained to the 

connection between the SMN and the DMN (F = 10.364, p = .001, lCI = .736, uCI = 

2.771) as well as FPN (F = 10.432,  p = .001, lCI = .735, uCI = 2.758). “No significant 

interaction effect between age and sex on any RSFCpos values was revealed. Further, 

education and its interaction effects with age and sex showed no significant relations with 

any RSFCpos values. Lastly, there were no significant sex-related differences for any 

negative strength values found.” (Stumme et al., 2020, page 7) (Supplementary Table 5, 

Supplementary Figure 2).
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Intra-network Inter-network Ratio-scores 

Between-network 

Figure 9:          Network-wise sex-related RSFCpos differences. 
Visualized intra-network RSFCpos, inter-network RSFCpos, the ratio-scores and between-network RSFCpos differences (z-scores, including error bars) between male (blue dots) and 

female (pink dots). Significant values (< 0.007 after Bonferroni-correction for intra-, inter-network and the ratio-scores & < 0.002 after Bonferroni-correction for between-network 

RSFCpos), that additionally survived post-hoc bootstrap validation, are indicated by an asterisk. 
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4.2.3 Relation between RSFC and Cognitive Performance 
To examine the relation between whole-brain RSFC and cognitive performance, 

cognitive performance variables were first decomposed to principal components (PCA) 

and subsequently related to RSFC estimates using a two-step approach. First, the relation 

between the cognitive components and RSFCpos was assessed using partial correlations 

and correcting for the effect of age, sex and education. Second, to investigate whether the 

depicted relations between RSFCpos and cognitive performance may be explained by age- 

and sex-related RSFCpos differences, mediation analyses were performed. 

Principal Component Analysis 

Conducting a PCA on the 16 cognitive variables included in the present study revealed 

three principal components with an eigenvalue of >1, covering 49% of overall variance 

(Table 5).   

Table 5:           Eigenvalues and explained variance from PCA. 
Initial eigenvalues, eigenvalues after extraction, and eigenvalues and percentage of explained variance after 

Varimax rotation. 

The composition of the three identified components (eigenvalue criterion of >1) are 

visualized in Figure 10 and now described in more detail. “The first component majorly 

comprised performance in verbal memory, phonemic and semantic verbal fluency, figural 

fluency and vocabulary knowledge (VERBAL MEMORY & FLUENCY). The second 

component highlighted performance in (selective) attention, figural memory, visual 

spatial working memory and additionally included problem solving (NON-VERBAL 

MEMORY & ATTENTION). Component three particularly addressed the participants’ 

capacity of working memory and concept shifting (VERBAL WORKING MEMORY & 

Initial eigenvalues 
Rotation sums of squared 

loadings 
 Component 

Total 
% of 

variance 
Cumulative 

% Total 
% of 

variance 
Cumulative 

% 
1 Verbal Memory & Fluency 5.364 33.527 33.527 2.93 18.313 18.313 
2 Non-verbal Memory & Attention 1.381 8.633 42.16 2.691 16.816 35.129 
3 Verbal Working Memory & Executive 1.124 7.028 49.188 2.25 14.059 49.188 
4 0.933 5.833 55.021 
5 0.853 5.332 60.354 
6 0.791 4.941 65.295 
7 0.74 4.624 69.92 
8 0.692 4.323 74.242 
9 0.669 4.183 78.425 

10 0.63 3.938 82.363 
11 0.587 3.667 86.03 
12 0.517 3.233 89.263 
13 0.48 2.997 92.261 
14 0.454 2.84 95.1 
15 0.41 2.563 97.663 
16 0.374 2.337 100 
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EXECUTIVE).” (Stumme et al., 2020, page 7). Relating the cognitive components to age, 

sex and education revealed significant differences across age, sex as well as the education 

level. “All three components showed significant negative correlations with age 

(VERBAL MEMORY & FLUENCY: p < .001, r: -.311; NON-VERBAL MEMORY & 

ATTENTION: p < .001, r: -.371; VERBAL WORKING MEMORY & EXECUTIVE: p 

= .007, r: -.097.; education and sex as covariates), indicating an overall age-related 

performance decline. The education level was significantly positively correlated with the 

verbal cognitive performance components (VERBAL MEMORY & FLUENCY: p < 

.001, r: .323; VERBAL WORKING MEMORY & EXECUTIVE:  p < .001, r: .263, 

corrected for sex and age) but not the NON-VERBAL MEMORY & ATTENTION 

component (p = .248, r: -.042; corrected for sex and age). Further, males were found to 

outperform females in the first two components, but not in the third (VERBAL 

MEMORY & FLUENCY:  F = 34.489, p < .001; NON-VERBAL MEMORY & 

ATTENTION: F = 37.237, p < .001; VERBAL WORKING MEMORY & EXECUTIVE:  

F = 0.465, p = .495, age and education as covariates).” (Stumme et al., 2020, page 7).  

Figure 10:        Factor loadings of each cognitive function on each component extracted from PCA. 
The respective values are also denoted in Table 2. Grey = VERBAL MEMORY & FLUENCY, yellow = 

NON-VERBAL MEMORY & ATTENTION, brown = VERBAL WORKING MEMORY & 

EXECUTIVE. 

Cognitive Performance and RSFC 

To relate differences in the functional whole-brain architecture to the participants 

cognitive performance, the three identified principal components were related to RSFCpos 

estimates using partial correlations (corrected for age, sex and education). In fact, results 
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revealed RSFCpos the be related to all three cognitive components (Table 6 and visualized 

in Figure 5C).  

The first cognitive component (VERBAL MEMORY & FLUENCY) was found 

to be significantly related to connectivity estimates including the LN, FPN and DMN 

(Figure 11). The between-network RSFCpos of the FPN and DMN (p = .01, r: -.093, lCI 

= -.166, uCI = -.017) was negatively related to the VERBAL MEMORY & FLUENCY 

component. While the ratio-score of the LN also showed a negative correlation with the 

first component (p = .023, r: -.082, lCI = -.152, uCI = -.016), a higher FPN’s ratio-score 

was associated with higher performance in the VERBAL MEMORY & FLUENCY 

component (p = .025, r: .081, lCI = .008, uCI = .152).  

Figure 11:        Scatterplots of significant correlations between RSFCpos and cognitive component one. 
The visualized results (z-scores) showed a significant correlation between the cognitive component one 

(VERBAL MEMORY & FLUENCY) and RSFCpos estimates (green = between-network RSFC, purple = 

ratio scores). Grey bar indicating the VERBAL MEMORY & FLUENCY component. 

The second component (NON-VERBAL MEMORY & ATTENTION) showed 

associations with the RSFCpos between networks including the VN, SMN, DAN, VAN 

and FPN (Figure 12). Specifically, higher intra-network RSFCpos of the VN (p = .033, r: 

.077, lCI = -.008, uCI =.148) was associated with better cognitive performances. 

Although this effect did not remain significant after bootstrap validation, the more 

specific between-network RSFCpos of the VN with the SMN (p = .006, r: .099, lCI = .032, 

uCI = .162) and DAN (p = .010, r: .093, lCI = .020, uCI = .166) showed significant 

positive relations with the second component. Further, the SMN showed positive and 



37  

negative associations with the cognitive performance in NON-VERBAL MEMORY & 

ATTENTION: while the intra-network RSFCpos (p = .036, r: .076, lCI  = .005, uCI = .148) 

and ratio-score (p = .008, r: .095, lCI = .027, uCI = .162) of the SMN were positively 

correlated with the performance, the between-network RSFCpos of the SMN and VAN (p 

= .001, r: -.120, lCI = -.192, uCI = -.042) as well as FPN (p = .028, r: -.079, lCI = -.158, 

uCI = -.005) were negatively correlated. Lastly, a lower performance of the second 

component was found to be related to a higher RSFCpos between the DAN and VAN (p = 

.002, r: -.110, lCI = -.186, uCI = -.038).  

Figure 12:        Scatterplots of significant correlations between RSFCpos and cognitive component two. 
The visualized results (z-scores) showed a significant correlation between the cognitive component two 

(NON-VERBAL MEMORY & ATTENTION) and RSFCpos estimates (blue = intra-network RSFCpos, 
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green = between-network RSFCpos, purple = ratio scores). Yellow bar indicating the NON-VERBAL 

MEMORY & ATTENTION component. 

The third, i.e. VERBAL WORKING MEMORY & EXECUTIVE component, was found 

to be positively related to the SMNs intra-network RSFCpos (p = .005, r: .10, lCI = .035, 

uCI = .174), its ratio-score (p = .001, r: .125, lCI = .055, uCI = .198) and its between-

network RSFCpos with the VN (p = .023, r: .082, lCI = .007, uCI = .152), visualized in 

Figure 13. 

Figure 13:        Scatterplots of significant correlations between RSFCpos and cognitive component three. 
The visualized results (z-scores) showed a significant correlation between the cognitive component three 

(VERBAL WORKING MEMORY & EXECUTIVE) and RSFCpos estimates (blue = intra-network 

RSFCpos, green = between-network RSFCpos, purple = ratio scores). Red bar indicating the VERBAL 

WORKING MEMORY & EXECUTIVE component.
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Table 6:           Results of all partial correlations between network-wise RSFCpos estimates and cognitive performance components. 
Partial correlations between intra-, inter-, the ratio-scores, between-network RSFCpos and the three cognitive performance components (age, sex and education level as covariates): r 

and p-values. Significant values (p < 0.05, without Bonferroni-correction), that additionally survived post-hoc bootstrap validation, are indicated by an asterisk and highlighted in grey. 

For significant effects, also effect sizes (eta-square) are denoted.  

Verbal Memory & Fluency Non-verbal Memory & Attention Verbal Working Memory & Executive 
Functions 

VN SMN DAN VAN LN FPN DMN VN SMN DAN VAN LN FPN DMN VN SMN DAN VAN LN FPN DMN

Within r 
p 
eta 

.008 

.818 
.042 
.246 

.033 

.365 
.029 
.428 

-.062 
.087 

.046 

.207 
-.021 
.555 

.077 

.033 * 

.006 

.076 

.036 * 

.006 

.041 

.253 
-.023 
.521 

.027 

.458 
.009 
.802 

-.064 
.077 

.014  

.69 
.101 
.005 * 
.01 

-.038 
.294 

.04  

.266 
.042 
.243 

.027 

.447 
-.001 
.968 

Inter r 
p 
eta 

.007 

.846 
.006 
.861 

-.007 
.842 

-.001 
.989 

.051 

.162 
-.062 
.084 

-.018 
.618 

.072 

.046 * 

.005 

-.067 
.063 

-.051 
.158 

-.064 
.078 

.002 

.965 
-.032 
.383 

-.03 
.409 

.013 

.714 
-.04 
.264 

-.042 
.241 

-.058 
.105 

-.019 
.594 

-.033 
.354 

-.045 
.211 

Ratio r 
p 
eta 

.005  

.89 
.025 
.495 

.051 

.158 
.028 
.443 

-.082 
.023 * 
.007 

.081 

.025 * 

.007 

-.006 
.858 

-.01 
.792 

.095 

.008 * 

.009 

.051 

.155 
.024 
.511 

.022 

.545 
.022 
.546 

-.047 
.195 

-.01 
.785 

.125 

.001 * 

.016 

.002 

.946 
.073 
.042 * 
.005 

.051  

.16 
.049 
.177 

.046  

.207 

Between 
VN 1 1 1 

SMN r 
p 
eta 

.056 

.123 
1 .099 

.006 * 

.01 

1 .082 
.023 * 
.007 

1 

DAN r 
p 
eta 

-.003 
.927 

.005 

.887 
1 .093  

.010 * 

.009 

.033 

.356 
1 .05  

.165 
.031 
.384 

1 

VAN r 
p 
eta 

.01  

.781 
-.029 
.425 

-.014 
.703 

1 -.017 
.644 

-.12 
.001 * 
.014 

-.11 
.002 * 
.012 

1 -.038 
.292 

-.051 
.16 

-.035 
.334 

1 

LN r 
p 
eta 

.032 

.378 
.008 
.818 

.002  

.95 
.004 
.916 

1 -.046 
.201 

-.023  
.52 

-.029 
.431 

-.031 
.392 

1 -.066 
.069 

-.061 
.093 

-.061 
.091 

.023 

.522 
1 

FPN r 
p 
eta 

-.021 
.555 

-.016 
.658 

.028 

.445 
.032 
.379 

.032 

.371) 
1 .019  

.59 
-.079 
.028 * 
.006 

-.028 
.443 

.008 

.817 
.008 
.827 

1 -.017 
.629 

-.066 
.068 

-.042 
.248 

-.046 
.204 

-.01 
.786 

1 

DMN r 
p 
eta 

-.026 
.472 

.026 

.477 
-.039 
.28 

-.016 
.657 

.06  

.096 
-.093 
.01 * 
.009 

1 .01  
.791 

-.037 
.306 

-.002 
.953 

.003 

.937 
.043  
.23 

-.048 
.181 

1 -.028 
.433 

-.042 
.241 

-.042 
.245 

-.022 
.534 

.007 

.843 
-.015 
.679 

1 
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4.2.4 Mediating Effects of RSFC Differences related to Cognition 
For some RSFCpos values, associations were found with both, age as well as cognitive 

performance. For example, the intra-network RSFCpos of the SMN showed negative 

relation to not only age, but a positive relation to the performance in the VERBAL 

WORKING MEMORY & EXECUTIVE component. “This leads to the question, 

whether these concurrent effects are also significantly related, hence whether the age-

related differences in RSFCpos mediate the cognitive performance differences across ages 

or if these are independent processes.” (Stumme et al., 2020, page 9). To test this effect, 

mediation analyses were performed and revealed that age indeed influences the relation 

between RSFCpos and cognitive performance (Table 6 and Figure 14). “While the age-

related intra-network RSFCpos of the VN significantly mediated the effect of age on the 

NON-VERBAL MEMORY & ATTENTION component, the intra-network RSFCpos as 

well as the ratio-score of the SMN mediated both, the age-related performance in the 

VERBAL WORKING MEMORY & EXECUTIVE as well as NON-VERBAL 

MEMORY & ATTENTION component. The VN-SMNs between-network RSFCpos was 

found to mediate the effect of age on the NON-VERBAL MEMORY & ATTENTION 

component. 

Since performance in two cognitive components (VERBAL MEMORY & 

FLUENCY, NON-VERBAL MEMORY & ATTENTION) were also found to be 

significantly different between males and females, the question raised whether these 

differences may be mediated by sex-related differences in RSFCpos. And indeed, sex-

related differences in RSFCpos between the SMN and FPN were found to significantly 

mediate the cognitive performance of the NON-VERBAL MEMORY & ATTENTION 

component.” (Stumme et al., 2020, page 9) (Table 7). 
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Table 7:           Mediating effects of RSFCpos values on the effect of age or sex on cognition. 
Mediation analyses to test the effect of RSFC values (M) on the effect of age or sex (X) on cognition (Y) (corrected for sex/age, education and the two remaining components, 

respectively). Significant models are indicated by an asterisk. Comp = component.  

Figure 14:        Visualized mediating effects of RSFCpos values on the effect of age or sex on cognition. 
Significant mediation effects of RSFCpos (M) on the relation between age or sex (X) and cognition (Y). Blue lines = negative relation, red lines = positive relation. Blue boxes =

intra-network RSFC, green boxes = between-network RSFC and purple boxes = ratio scores. 

Age

Comp 2

VN

SMN

VN - SMN

SMN Ratio

Sex

SMN - FPN

Comp 3c

a b

M

X Y

a b

Model ß (p-value) Effects Bootstrap confidence 
intervals 

X M Y a (p) b (p) c (p) Total Direct Indirect BootSE LLCI ULCI 
* Age VN Comp 2 -.1260 

(.001) 
.0697 
(.033) 

-.4076 
(<.001) 

-.0626 
(<.001) 

-.0613 
(<.001) 

-.0088 .0048 -.0194 -.0010 

* SMN Comp 2 -.1452 
(<.001) 

.0691 
(.036) 

-.4063 
(<.001) 

-.0626 
(<.001) 

-.0611 
(<.001) 

-.01 .0055 -.0221 -.0007 

* Comp 3 -.1290 
(.002) 

.0964 
(.005) 

-.1609 
(<.001) 

-.0260 
(<.001) 

-.0242 
(<.001) 

-.0124 .0062 -.0266 -.0027 

* VN-SMN Comp 2 -.1065 
(.005) 

.0899 
(.006) 

-.4068 
(<.001) 

-.0626 
(<.001) 

-.0611 
(<.001) 

-.0096 .0048 -.0203 -.0016 

Comp 3 -.0760 
(.064) 

.0784 
(.023) 

-.1673 
(<.001) 

-.0260 
(<.001) 

-.0251 
(<.001) 

-.006 .0043 -.0161 .0003 

SMN-FPN Comp 2 .1045 
(.006) 

-.0724 
(.028) 

-.4088 
(<.001) 

-.0626 
(<.001) 

-.0614 
(<.001) 

-.0076 .0054 -.0204 .0002 

* SMN Ratio Comp 2 -.1783 
(<.001) 

.0881 
(.008) 

-.4007 
(<.001) 

-.0626 
(<.001) 

-.0602 
(<.001) 

-.0157 .007 -.0298 -.0041 

* Comp 3 -.1578 
(<.001) 

.1214 
(<.001) 

-.1541 
(<.001) 

-.0260 
(<.001) 

.0232 
(<.001) 

-.0192 .0075 -.0357 -.0067 

* Sex SMN-FPN Comp 2 -.2409 
(.002) 

-.0724 
(,0279) 

-.3838 
(<.001) 

-.3664 
(<.001) 

-.3838 
(<.001) 

.174 .0104 .0001 .0407 
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4.3 Discussion: Network-based RSFC differences 

In order to contribute to the understanding what neurobiological sources there may be for 

the highly variable age-related performance decline in older adults, the first study 

assessed systematic functional network differences and related these to age and sex and 

cognitive performance.  

Collectively, the results of the first study indicated the whole-brain functional 

network architecture to indeed be sensitive to age, sex as well as cognitive performance. 

Specifically, aging was found to be accompanied by a combination of age-related 

decreases in intra- together with overall increases in between-network RSFC leading to 

more integrated and less segregated functional brain networks. This effect was 

underpinned by the results of the ratios-scores, i.e. a parameter integrating the intra- and 

inter-network RSFC, indicating considerable increases in the network integration across 

aging. Remarkably, in the here examined older generation, mainly RSFC of primary 

processing networks were found to be affected. Importantly, particularly the RSFC of 

primary processing networks seem to be additionally crucial for cognitive performance 

as age-related differences in RSFC were found to mediate cognitive performance 

differences. Furthermore, inspecting sex and its relation to RSFC, systematic differences 

were found pointing at a more integrated system in males. Results based on functional 

network differences in relation to age (4.3.1), cognitive performance (4.3.2) and sex 

(4.3.3) will be discussed in detail in the following.  

4.3.1 Age-related RSFC differences 
Overall, results of previous studies that either compared groups of younger to older adults 

(Geerligs et al., 2015; Goldstone et al., 2016; Grady et al., 2016; Nashiro et al., 2017; 

Siman-Tov et al., 2016; Spreng et al., 2016) or investigated lifespan trajectories (Betzel 

et al., 2014; Cao et al., 2014; Chan et al., 2014; Ferreira et al., 2016; Mowinckel et al., 

2012; Tsvetanov et al., 2016; Varangis et al., 2019) indicate age-related decreases in intra-

network RSFC and increases in between-network RSFC. Results of the here conducted 

first study amend these evidences by showing that the trend of an age-related attenuated 

network specificity also persists within particularly older subjects. Remarkably, the 

applied whole-brain approach revealed that age-related RSFC differences in older adults 

seem to be particularly prominent in primary processing networks, i.e. the VN and SMN. 

Importantly, these networks were additionally found to be especially relevant for 

cognitive performance differences (see 4.3.2 for further discussion). Certain interrelations 

are of interest when looking at the networks more specifically, discussed in the following. 



43  

Age-related intra-network RSFC decreases which were found for the VN as well as the 

SMN are very much in line with Perry et al. (2017), who used a multivariate approach in 

older adults (n = 101, 70-90 years) and also found RSFC of primary processing networks 

to not only be age-sensitive but also related to cognitive performance. Perry et al. (2017) 

found very similar age effects in the SMN using a comparable age-range as used within 

the current study (50 – 95 years). In contrast to that, “former studies investigating the 

whole adult lifespan, repeatedly found intra-network RSFC decreases in higher-order 

networks (e.g. attention, FPN, DMN) (Betzel et al., 2014; Chan et al., 2014; Ferreira et 

al., 2016; Grady et al., 2016; Mowinckel et al., 2012; Siman-Tov et al., 2016; Spreng et 

al., 2016; Varangis et al., 2019), whereas intra-network RSFC of primary processing 

networks were found to remain stable (Betzel et al., 2014; Geerligs et al., 2015; Siman-

Tov et al., 2016; Varangis et al., 2019). The latter seems to hold true when considering 

linear effects only. Allowing for non-linear effects showed that the SMN follows an 

inverted u-shaped trajectory, though, with the inflection point at the age of about 50 years 

(Betzel et al., 2014; Siman-Tov et al., 2016).” (Stumme et al., 2020, page 10). Hence, 

comparing the effects in older adults to those across the whole adult lifespan, a particular 

vulnerability of primary processing networks at higher ages appears which stresses the 

need to examine age-related RSFC differences with respect to different age-groups. In 

terms of higher-order networks age-related RSFC differences in older adults, previous 

results are inconclusive indicating intra-network RSFC decreases on the one hand, cross-

sectionally (Zonneveld et al., 2019) and longitudinally (Ng et al., 2016), but 

longitudinally stable intra-network RSFC on the other hand (Persson et al., 2014). In 

conclusion, for intra-network RSFC, results of the current study indicate higher age to be 

characterized by decreases of only primary processing networks (e.g. VN and SMN) 

while higher-order remain rather stable.  

Age-related differences of the between-network RSFC were two-fold. On the one 

hand, similar to the results of the intra-network RSFC, the connectivity between primary 

processing network was found to decrease with ascending age. This, however, was 

accompanied by overall age-related increases of the between-network RSFC, particularly 

applicable to connections of the SMN with the LN and FPN. Given the two primary 

processing networks facilitating efficient visuomotor integration capabilities (Goodale, 

2011), age-related decreases in intra-network RSFC as well as between-network RSFC 

may present a possible explanation for the impaired motor performances in older adults, 

i.e. visuomotor tasks including eye-hand coordination or spatially oriented movements

(Guan & Wade, 2000; Van Halewyck et al., 2014). Increases of the SMN’s between-
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network RSFC have previously been shown (Tomasi & Volkow, 2012a; Zuo et al., 2010) 

and may be understood as a compensational attempt to recruit additional networks that 

are implicated in the processing of memory functions (LN, (Frey & Petrides, 2002; Laird 

et al., 2011; Petrides, 2007; Smith et al., 2009)), attention and control mechanisms 

(Corbetta & Shulman, 2002; Spreng et al., 2010) to increase performance monitoring to 

maintain cognitive performance (Heuninckx et al., 2008; Varangis et al., 2019). 

“Consistent with the compensational theory, increasing between-network RSFC to 

higher-order networks could be viewed as the attempt to compensate for e.g. decreasing 

intra-network RSFC or impoverished information integration from other networks 

(Marstaller et al., 2015; Park & Reuter-Lorenz, 2009; Reuter-Lorenz & Cappell, 2008) to 

counteract behavioral decline. These effects are very much in line with previous studies 

suggesting that older adults use countervailing cognitive strategies to cope with 

attenuated perceptual input integration (see Roberts and Allen (2016) for review) and that 

reorganization processes within the posterior brain may represent an impetus for 

restructuring functional organizations in frontal areas (Davis et al., 2008; Goh, 2011; Lee 

et al., 2015; Seidler et al., 2010).” (Stumme et al., 2020, page 10). There were, however, 

no positive associations between the between-network RSFC and cognitive abilities 

found in the current study, which may rather hint at a dedifferentiation process. Increasing 

between-network RSFC are thereby associated with a reduced distinctiveness of 

functional brain networks resulting in a worse selectivity of specific cognitive functions 

(Goh, 2011), further discussed in 4.3.2.  

In summary, across the aging process the functional diffusivity increases. Age-

related RSFC decreases are foremost driven by two specific networks (VN and SMN) 

showing decreases within as well as between networks. Besides the primary processing 

networks showing between-network RSFC decreases, the overall RSFC between 

networks increases which leads to a less segregated and more integrated network system 

in higher ages.  

For negative correlations, increases were found between as well as within 

networks. “Previous results on between-network anti-correlations mainly pertain to the 

DMN indicating age-related decreases of anti-correlations with the FPN (Geerligs et al., 

2015), VAN (Ferreira et al., 2016; Meier et al., 2012), DAN (Siman-Tov et al., 2016) and 

SMN (Meier et al., 2012; Siman-Tov et al., 2016).” (Stumme et al., 2020, page 10). Since 

the DMN is a task negative network, i.e. principally anti-correlated with other networks, 

increasing between-network RSFC may reflect a reduced capacity to suppress the DMN 

during task. With regards to task positive networks, lower anti-correlations were found 
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for the connections between primary processing networks (Geerligs et al., 2015), the FPN 

with the cingulo-opercular (Geerligs et al., 2015; Meier et al., 2012), DAN (Siman-Tov 

et al., 2016) as well as the SMN (Meier et al., 2012). “As anti-correlations between 

networks have been considered as a marker for network segregation (Fox et al., 2009) 

previous results point at an increase of network integration from younger to older adults 

particularly associated with higher-order cognitive functions, such as the FPN. In 

contrast, in the current study increases of anti-correlations between the VN and SMN, LN 

and DMN as well as FPN were found, which may hint at different reorganization 

processes in older adults compared to the whole adult lifespan. Cognitive performance 

changes (Hedden & Gabrieli, 2004) as well as RSFC changes (Mowinckel et al., 2012) 

are found to contain non-linear effects, with a major change deviation from the overall 

linear trend around the age of 55-60, underpinning the need to account for differences 

between specific age groups.” (Stumme et al., 2020, page 10). Furthermore, in the present 

study increases of anti-correlations within networks were found for the VN, SMN, DAN 

and FPN. Especially in terms of the VN and SMN these results build the exact opposite 

effect as compared to positive correlations. Potentially, in older adults, regions within 

primary processing networks work not only less synchronized but even more anticyclical. 

Previous studies addressing the effects of anti-correlations within networks found either 

no (Meier et al., 2012) or only very few correlations with age (Varangis et al., 2019). 

Until now, there are no other results systematically evaluating network specific anti-

correlations in older adults pointing at the need for future research.  

4.3.2 Impact on Cognitive Performance 
Results of the current study indicate the whole-brain RSFC pattern in older adults to 

reorganize in an age-dependent manner. This functional reorganization process is 

assumed to be at least partly related to the cognitive performance variability in aging 

(Marques et al., 2016; Sadaghiani et al., 2015; Zuo et al., 2017). Results of this first 

conducted study indeed underpin this assumption by showing that the majority of RSFC-

cognition relations pertain to networks that are also related to aging, e.g. the VN and 

SMN. Testing these associations statistically revealed differences in RSFC to 

significantly mediate the cognitive performance differences in aging.  

Specifically, within primary processing networks, “differences in RSFC were 

associated with the NON-VERBAL MEMORY & ATTENTION and VERBAL 

WORKING MEMORY & EXECUTIVE components. While the SMN was found to 

mediate age-related differences of both components, the VN network was primarily 

associated with the NON-VERBAL MEMORY & ATTENTION component. Since this 
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component is endowed with a high proportion of visual functions, one would expect (age-

related) decreases of the VN intra-network RSFC to be associated with reduced 

performances, which is exactly what was found.” (Stumme et al., 2020, page 11). 

Furthermore, regarding the between-network RSFC of the primary processing networks, 

higher RSFC was associated with better performance in both components, i.e. the NON-

VERBAL MEMORY & ATTENTION and VERBAL WORKING MEMORY & 

EXECUTIVE. Accordingly, differences in the VN and SMN’s between-network RSFC 

significantly mediate the age-related differences in the NON-VERBAL MEMORY & 

ATTENTION performance. In terms of between-network RSFC including higher-order 

networks, only negative relations were found with cognitive performance, whereas none 

of these connections significantly mediated age-related decreases in cognitive 

performance. So far, there exist one more study addressing whole-brain functional 

reorganizations in older adults and its association with cognitive performance. Their 

results are based on single connectivity estimates rather than network-based analyses, but 

indicate a very similar relationship between age, cognition and the VN as well as SMN’s 

RSFC (Perry et al., 2017). Together with the results of the current work, this very much 

hints at a relevant role of primary processing networks in terms of cognitive differences 

at higher age, which will be discussed further now. 

Two aging theories exist, i.e. the compensational theory (also see 1.2) and the 

dedifferentiation theory, that address functional reorganizations and its impact on 

cognitive performance. First, the compensational theory suggests increasing between-

network RSFC to characterize a compensational attempt that integrates information from 

other networks in order to counteract age-related decline resulting from e.g. decreasing 

intra-network RSFC (Grady et al., 2016; Heuninckx et al., 2008; Tsvetanov et al., 2016; 

Varangis et al., 2019). The here depicted increased RSFC of the SMN with networks 

involved in memory, attention and control mechanisms could indeed point an adaptive 

reorganization process that aims to maintain cognitive performance despite the 

impoverished information integration from the VN (Cabeza et al., 2002; Reuter-Lorenz 

& Cappell, 2008). However, increasing between-network RSFC of the SMN with the 

VAN and FPN were rather found to be related to worse cognitive abilities leading to the 

second aging theory, i.e. the dedifferentiation theory. Here, increasing covariance 

between brain networks is associated with a constantly higher recruitment of brain region 

resulting in a lower functional diversity of functional brain networks (Lou et al. 2019). 

This potentially goes along with a reduced capacity to select specific cognitive functions 

and may finally result in cognitive performance decline (Goh, 2011). In line, “very recent 
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meta-analyses not only found cognitive performances to decline, but the shared variance 

between cognitive abilities to increase with ascending age (Blum & Holling, 2017; 

Tucker-Drob et al., 2019), hinting at a dedifferentiation process not only in terms of 

functional brain networks but also regarding the cognitive system (de Mooij et al. (2018)). 

Investigations on the interrelation between age-related cognitive and brain differentiation 

are very limited, but may indeed be promising in uncovering specific patterns of age 

differentiation between brain and specific cognitive factors as exemplified by de Mooij 

et al. (2018).  

Results could indeed be interpreted as evidence for the compensation as well as 

dedifferentiation theory. Presumably, interconnected processes are conceivable (Figure 

15). First, the additional inclusion of higher-order networks associated with control and 

monitoring processes may indeed represent compensational attempts trying to counteract 

a starting cognitive decline. As the recruitment of additional brain region more and more 

increases, however, increasing between-network RSFC may no longer be supportive, but 

rather result in a decreased functional diversity of brain networks. This dedifferentiated 

network system may then be followed by a reduced selectivity of cognitive functions 

resulting in cognitive decline. 

Figure 15:        Modelled lifespan trajectories of RSFC differences and cognitive performance. 
Between-network RSFC (black), intra-network RSFC (grey) and cognitive performance (green) 

differences. While in younger age decreases of intra-network RSFC may be successfully compensated by 

specific increases of between-network RSFC, showing only minor cognitive impairments, constant 

increases of RSFC between networks may at some point supersede a target-oriented compensation, 

resulting in cognitive decline. Interpretations on younger age base on previous work (indicated by an 

asterisk), as the current study focuses on older age. NW = network. 
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Altogether, age-related RSFC differences were found to be accompanied by a cognitive 

performance decline. Thereby, a clear distinction can be made between the effects 

regarding primary processing networks as compared to higher-order networks: While the 

intra-network as well as between-network RSFC of the VN and SMN were positively 

associated with cognitive performance, the higher-order between-network RSFC was 

negatively related to cognitive performance.  

4.3.3 Sex-related differences in RSFC 
To the current state of research, sex-related network differences been demonstrated by 

task-based fMRI (Bell et al., 2006; Dumais et al., 2018; Filkowski et al., 2017; Spets & 

Slotnick, 2020; Subramaniapillai et al., 2019; Weiss et al., 2003) and SC using diffusion 

MRI (Ingalhalikar et al., 2014; Tunc et al., 2016). Results of the current study show that 

in particularly older adults, there exist significant differences in RSFC patterns between 

males and females. This is very much in line with previously published rs-fMRI results 

(Allen et al., 2011; Goldstone et al., 2016; Satterthwaite et al., 2015; Scheinost et al., 

2015; Tomasi & Volkow, 2012b) and will be discussed in more detail in the following.  

The in the current work depicted results of higher intra-network RSFC in females 

regarding the DMN and VAN are very much in line with previous rs-fMRI based research 

(Allen et al., 2011; Scheinost et al., 2015). Furthermore, “the females’ ratio score of the 

VAN was higher, indicating a higher segregated system especially concerning a network 

implicated in reflective and intuitive functions (Buckner et al., 2008; Huo et al., 2018; 

Vossel et al., 2014). In contrast, males’ SMN was significantly more integrated, showing 

higher inter-network RSFC compared to females.” (Stumme et al., 2020, page 10). 

Interestingly, the SMN’s between-network RSFC was found to mediate sex-related 

cognitive performance differences. These results potentially indicate sensorimotor 

functions to be more highly relevant for cognitive processing in males as compared to 

females (Cassady et al., 2019; Seidler et al., 2015). Previous results on RSFC have also 

found a higher integrated network system in males, which was already present in youth 

and early adulthood (9-22 years) (Satterthwaite et al., 2015) and was even intensified 

during the aging process (27-74 years) (Goldstone et al., 2016). For SC based on diffusion 

MRI, results show a very similar pattern (Tunc et al., 2016). Males were found to show a 

significantly higher SC between networks related to motor, sensory and executive 

functions, while the female’s network system was more strongly connected among 

networks associated with social motivation, attention and memory tasks. This has been 

considered beneficial to facilitate sex-specific functioning, i.e. “a high integration of 

perception and coordinated action in males and the communication between analytical 
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and intuitive processing in females (Ingalhalikar et al., 2014). Interestingly, Satterthwaite 

et al. (2015) examined sex-related RSFC differences in young healthy participants (aged 

9-22) and its relation to cognition and found males to outperform females in motor and

spatial cognitive tasks, while females were better in tasks of emotion identification and

nonverbal reasoning. Remarkably, the cognitive profile of their participants was

significantly related to the masculinity or femineity of the according RSFC pattern,

stressing the notion that networks may be organized to facilitate sex-related behavioral

functioning.” (Stumme et al., 2020, page 11).

Similarly, a very recent study on a subset of the 1000BRAINS dataset found 

significant differences in the cognitive profiles between older males and females 

(Jockwitz et al., 2021). Here, males were found to show a more holistic cognitive profile 

with stronger interrelations between performances while females were depicted by more 

decomposed, i.e. specific cognitive profiles. In fact, this is very much in line with the 

results of the current study, where males were found to show a more integrated whole-

brain functional system. Mediating effects of RSFC patterns on the relation between sex 

and cognition, though, could not be found which may be explained by the rather general 

effects of global cognitive functioning, as operationalized by the PCA components.  

In summary, results of this work are “in line with previous sex-related differences in 

functional as well as SC patterns of previous studies and expand the current knowledge 

about sex-related RSFC differences into the old age group. This stress the importance of 

considering sex when examining the functional connectivity architecture of older adults.” 

(Stumme et al., 2020, page 11). As of note, although there is a variety of studies indicating 

sex-specific differences to exist and even demonstrating that sex can be predicted based 

on rs-fMRI patterns (Weis et al., 2020; Zhang et al., 2018), caution is advised concerning 

the interpretation of these findings (Joel et al., 2015). Functional brain network patterns 

also clearly overlap between males and females and terms such as “male-brain” or 

“female-brain” should be avoided. 
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4.4 Conclusion 

Results of the first study within this current work indicate that the whole-brain functional 

connectome of older adults indeed undergoes a reorganization process with increases in 

RSFC between networks, while the RSFC within networks decrease. Age-related 

differences in RSFC were most prominent within and between primary processing 

networks. This is highly important as these results are different as compared to previous 

results on lifespan studies, where predominantly higher-order networks were found to 

change. Hence, in the older adult’s population, it seems that especially primary processing 

networks are sensitive to aging. This is particularly interesting as the current results 

additionally indicate that age-related decreases in cognitive performance are mediated by 

differences in the SMN’s and VN’s RSFC. Hence, in older age a shift towards overall 

higher network integration seems to be characteristic, but more importantly also 

decreases of RSFC in primary processing networks, the latter additionally associated with 

cognitive performance decline. Therewith, the results of the first study potentially 

unveiled a neurobiological factor accounting for the high inter-individually variable 

performances in older adults, i.e. RSFC differences of particularly primary processing 

networks.  

What still remains unclear is what sources there may be for the depicted RSFC 

aging patterns, i.e. less RSFC in primary processing networks accompanied by an overall 

higher network integration. As discussed above, theories exist suggesting compensation 

processes to be the impelling motive for RSFC changes. However, results on the relation 

between higher inter-network connectivity and cognitive performance are mixed, some 

studies rather pointing at dedifferentiation processes (i.e. higher between-network RSFC 

resulting in cognitive performance decline). In fact, sources of age-related RSFC 

differences are still a matter of debate. One potential factor that may influence age-related 

RSFC differences could be SC as it is the underlying construct to exchange information 

between regions. To test the relation between RSFC and SC, a second study was 

conducted that aimed at identifying age-related whole-brain RSFC differences that 

concurrently occur with whole-brain SC differences (see 5).  
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Study 2: Structural and Functional Connectivity 
Relation 

With the first study, RSFC differences were calculated network-wise and successfully 

linked to age, sex and cognitive performance. Building upon the results of the first study, 

the second study went one step further and aimed at unveiling potential sources for the 

depicted RSFC differences. Therefore, RSFC differences were related to SC. As SC is 

the underlying construct for brain regions to exchange information, a high relation 

between RSFC and SC could be expected. However, so far, especially in older adults, the 

relation between RSFC and SC is inconclusive (as discussed in 1.4). Therefore, by 

investigating RSFC and SC differences that concurrently occur across age, aim of the 

second study was to identify SC-RSFC relations which may potentially depict sources for 

the age-related RSFC differences as found in the first study.  

For the purpose of the second study, the resolution from the network level was 

increased to the investigation of nodal (region-wise) RSFC differences. By zooming from 

network level to more specific nodal-wise RSFC differences, age effects could be 

attributed to more specific brain regions. To relate RSFC differences to SC, it was taken 

advantage of an age prediction model. In recent years, an increasing number of studies 

have used different neuroimaging data, i.e. different brain features, to predict the 

participants’ biological age. Thereby, age prediction models unveil and therewith support 

our understanding of brain features that are particularly indicative for the aging process. 

For example, Jiang et al. (2020) used structural MRI to predict the biological age of 

participants (aged between 18 and 90 years) and found networks to vary in their prediction 

accuracy with particularly the FPN, DAN and DMN to have highest prediction values 

and therewith being most characteristic for the aging process. The majority of age 

prediction studies used structural MRI data and successfully predicted age with mean 

average errors between predicted and measured age of around 5 years (Cole & Franke, 

2017; Cole et al., 2017; Franke et al., 2010; Liem et al., 2017). Studies based on 

connectivity data have also demonstrated feasibility of RSFC (Dosenbach et al., 2010; La 

Corte et al., 2016; Li et al., 2018; Vergun et al., 2013) as well as SC (Han et al., 2014; 

Richard et al., 2018) for age prediction, though with prediction accuracies that not fully 

achieve those of structural MRI data. Building upon previous work on age prediction 

based on either SC or RSFC lifespan data, aim of this work was to build models of brain 

age in particularly older adults that incorporate whole-brain region-wise RSFC and SC 

data. Thereby, the intended purpose was to provide both, prediction accuracies but more 
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importantly, find SC and RSFC differences that are together characteristic for the older 

adults’ age.  

With respect to previous studies on age-related SC and RSFC differences, the frontal 

lobe was assumed to be particularly age-characteristic in terms of SC and the SMN in 

terms of RSFC. Given the non-conclusive evidence on the structure-function relation, an 

exploratory analysis on this relation was carried out to allow for a holistic perspective.  
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5.1 Material & Methods 

5.1.1 Sample 
From the first to the second study, another 18 participants aged between 55 and 87 years 

were scanned for 1000BRAINS resulting in a total of 969 older participants of one 

measurement time point. From this basic sample, 725 participants had both, functional 

rs-fMRI as well as structural DWI data available (see section 3.1), as relevant for the 

current multimodal cross-sectional study design. Of these 725 participants, 74 had to be 

excluded due to either preprocessing failure or insufficient quality of either functional 

data (n = 22) or structural data (n = 52, see 5.1.2 for description of quality control). Lastly, 

participants with missing information of education (n = 1) or the dementia screening test 

(n = 13, DemTect (Kalbe et al., 2004)) or those scoring low on the dementia screening 

test (score of eight or lower, n = 1) were excluded. In total, the current study comprises a 

sample of n = 636 subjects (Table 8).  

Table 8:           Sample distribution of the second study. 
Whole group, female and male regarding age and education: mean (sd). 

% Age (years) Education 
total 100 67.1 (6.8) 6.5 (2.0) 
male 51 67.7 (7.0) 7.0 (1.9) 

female 49 66.4 (6.6) 6.0 (1.8) 

5.1.2 Image preprocessing 
Functional image preprocessing 

For each participant, the first four echo-planar imaging (EPI) volumes were discarded. 

Using a two-pass procedure all functional images were corrected for head movement by 

fist aligning all volumes to the first image and second to the mean image using affine 

registration. By the use of the “unified segmentation” approach (Ashburner & Friston, 

2005), all functional images were spatially normalized to the MNI152 template (Holmes 

et al., 1998). This was preferred to normalization based on T1 weighted images as 

previous studies indicated increased registration accuracies (Calhoun et al., 2017; 

Dohmatob et al., 2018). Additionally, ICA-based Automatic Removal Of Motion 

Artifacts [ICA-AROMA (Pruim et al., 2015)] was applied. ICA-AROMA is a data-driven 

method to identify and remove motion-related independent components from functional 

MRI data. According to current suggestions for minimizing the relationship of motion 

and RSFC (Burgess et al., 2016; Ciric et al., 2017; Parkes et al., 2018), AROMA was 

combined with global signal regression in the current study. Lastly, all rs-fMRI images 
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were bandpass filtered (0.01 – 0.1 Hz). Subsequently, to check for each participant for 

volume-wise severe intensity dropouts, the established algorithm by Afyouni and Nichols 

(2018) was used that generates p-values for spikes (DVARS) based on the preprocessed 

functional data. Participants for whom more than 10% of the 300 volumes were detected 

as dropouts were excluded from further analyses (n = 8). Lastly, the “check sample 

homogeneity was performed using SD across sample” function analysis provided by 

the CAT12 toolbox (Gaser & Dahnke, 2016) to check for potential 

misalignments. Participants detected as outlier where manually checked and excluded as 

the individual mean AROMA functional image did not align to the MNI152 template (n 

= 8). 

Structural diffusion image preprocessing 

For each participant, tissue probability maps (TPM) for grey matter, white matter as well 

as corticospinal fluid (CSF) were computed from T1 data using the CAT12 (Gaser & 

Dahnke, 2016) implemented in SPM12 (Ashburner, 2009). To optimally extract the brain 

from the T1 data, brain masks were used created by superimposing the three probability 

maps and thresholding them at 0.5 (small enclosed holes were filled). The T1 brain image 

was bias field corrected, rigidly aligned to MNI152 template space and resampled to 

1.25 mm isotropic voxel size serving as a coregistration image for the subsequent 

alignment of the similarly resampled diffusion data (see below) to the MNI152 template 

(in accordance to standard pipelines as used in e.g. the human connectome project 

(www.humanconnectomeproject.org) or the UK Biobank (www.ukbiobank.ac.uk)). 

Diffusion MRI data were corrected for eddy current and motion artifacts including 

interpolation of slices with signal dropouts (Andersson et al., 2016; Andersson & 

Sotiropoulos, 2016). Visual quality control was performed to check for ghosting, 

remaining signal dropouts or very noisy data. Suboptimal datasets were removed from 

further analysis (n = 69). For diffusion MRI - T1 alignment, the first b0 images from each 

diffusion MRI data with b1000 and b2700 were extracted and rigidly aligned to T1 dataset 

using mutual information as cost function (Wells et al., 1996). Based on the 

corresponding transforms, all diffusion MRI data were registered to the individual T1 

space, separately for the two b-values. The realignment implicitly resampled the data to 

1.25mm and b-vectors were rotated according to the transformations. To account for 

susceptibility artefacts and optimize image registration, Anisotropic Power Maps (APM) 

were computed (Dell’Acqua et al., 2014) from the b2700 diffusion MRI data. Since the 

APM contrast is very similar to the T1 image, they provide an optimal basis for image 

registration. Accordingly, APMs were used to compute the non-linear transformation 
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from diffusion to anatomical space additionally taking EPI induced distortions into 

account using ANTs (https://stnava.github.io/ANTs/). The derived non-linear 

transformations were then used to transform the TPMs to diffusion space. Finally, the two 

datasets with b1000 and b2700 were merged into one single file and corrected for 

different ETs. This correction was computed by a voxel-wise multiplication of the b2700 

data with the ratio of the non-diffusion-weighted data respectively for the two datasets. 

Subsequently, local modelling and probabilistic streamline tractography were performed 

using the MRtrix software package (Tournier et al., 2012) version 0.3.15. The constrained 

spherical deconvolution (CSD) local model was computed using multi-tissue CSD of 

multi-shell data (Jeurissen et al., 2014) using all shells and a maximal spherical harmonic 

order of 8. Ten million streamlines were computed with dynamic seeding in the grey-

white matter interface for every subject using the probabilistic iFOD2 algorithm with a 

maximal length of 250 mm and a cut-off value at 0.06.  

5.1.3 Connectome 
Within the second study a continued development of the parcellation from Yeo et al. 

(2011) with a finer-grained subdivision of brain networks into a total of 400 regions was 

utilized (Schaefer et al., 2018), visualized in Figure 16. This was done according to recent 

studies, which found a resolution of 400-600 nodes to be optimal for functional (Schaefer 

et al., 2018) and structural analyses (Varikuti et al., 2017). This cerebral cortex 

parcellation was created based on resting-state images from 1489 participants integrating 

both, a local gradient and a global similarity approach. Thereby, the capability of a local 

gradient approach to detect abrupt changes in voxels’ RSFC was combined with a global 

similarity approach which clusters areas across the whole brain with similar RSFC 

patterns into parcels sharing high covarying rs-fMRI signals. Comparing the results to 

four previously published parcellations, they found their generated parcellations to be 

depicted by a very great functional and connectional homogeneity and additionally 

achieved a comparable agreement with architectonic boundaries (Schaefer et al., 2018). 

Figure 16:        Functional network parcellation in accordance to Schaefer et al. (2018). 
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Functional Connectome 

Comparable to the first study, from the preprocessed rs-fMRI data, mean time series were 

extracted node-wise spanning 296 time points [fslmeants (Smith et al., 2004)]. Pearson’s 

product-moment correlation was used to estimate the correlation coefficient between 

nodes’ average BOLD time series resulting in a symmetric 400*400 matrix, each entry 

indicating the connection between regions with a high correlation indicating a high 

connection between the respective nodes. To account for the potential existence of 

correlations caused by noise, the statistical significance of each correlation coefficient 

was tested. Therefore, the observed timeseries were randomized by taking its Fourier 

transform, scrambling its phase and then inverting the transform (Zalesky et al., 2012). 

This procedure was repeated 1,000 times and followed by a permutation test (non-

significant edges at p > .05 were discarded). Finally, the adjacency matrix was 

transformed into z-scores by applying a Fishers r-to-z transformation. Lastly, to avoid 

that negative and positive correlations cancel each other out in the estimation of strength 

values, RSFC matrices were separated, one only including positive correlations (RSFCpos) 

and the second one only including absolute values of negative correlations (RSFCneg).  

Structural Connectome 

For SC, the parcellation template first had to be warped to individual diffusion space. 

This was done by combining the non-linear warps of the spatial T1 registration to 

MNI152 and the distortion correction with the APMs. Since streamlines are generated 

seeding from the grey-white matter interface and the predefined parcellation scheme only 

covers cortical grey matter, the template was expanded adding voxels towards the grey-

white matter boundary so that all regions also include the seeding points. To increase the 

biological accuracy of SC, the SIFT-2 method was applied (Smith et al., 2015). Here, 

each streamline is weighted with an estimate of its effective cross-sectional area, so that 

the streamline density matches the white matter fiber density computed directly from the 

diffusion signal. Finally, to adjust for normal distributions the derived 400*400 matrix 

was log10 transformed.  

5.1.4 Node-wise Connectivity Parameters 
Based on the structural connectome and the positive as well as negative functional whole-

brain connectomes (i.e. three different 400x400 connectivity matrices) two different 

parameters for each node were calculated:  

(i) Intra-network connectivity estimate comprising the sum of weights (i.e.

connectivity values) of edges from that node to all nodes within its



57  

corresponding network divided by the number of all edges in the network (n 

nodes, there are n*(n-1)/2 possible edges in a fully connected network) 

(ii) Inter-network connectivity estimate comprising the sum of edge weights from

that node to all nodes outside its corresponding network divided by the

number of all edges in the network.

These estimates resulted in 6 different strength values for each node (intra-network: SC, 

RSFCpos, RSFCneg and inter-network: SC, RSFCpos, RSFCneg), in total comprising 2400 

(3*2 strength values * 400 parcels) connectivity values for each subject.  

5.1.5 Statistical Analysis 
To unveil SC and RSFC differences that are together characteristic for the older adults’ 

age, a multivariate statistical analysis was performed which can be subdivided into two 

sections. First, a prediction model was built and its accuracy to predict age also in 

comparison to random data was validated (Figure 17, A). Building upon the validated 

model the composition of RSFC and SC differences were analyzed, i.e. how they are 

combined within the components to predict age (Figure 17, B). For the prediction model, 

partial least square regression was used (PLSR (Mevik et al., 2020)) with whole-brain 

region-wise SC, RSFCpos and RSFCneg values as predictor variables (corrected for sex 

and education) and biological age as the response variable.  

PLSR is a multivariate statistical approach that has the advantage to incorporate 

multiple predictor variables potentially even extending the amount of observations and 

depicting high collinearity (Haenlein & Kaplan, 2004; Krishnan et al., 2011; McIntosh & 

Lobaugh, 2004). With PLSR, predictor variables are decomposed into a smaller set of 

independent components (nonlinear iterative partial least squares algorithm, NIPALS) on 

which a least square regression is performed to define covariates that are maximally 

correlated with the response variable. Hence, with regards to the current dataset, within 

one component a unique amount of variance of the connectivity estimates (predictors) 

was used to explain the highest possible amount of variance in age (response). Therefore, 

PLSR assigned all connectivity estimates (SC, RSFCpos, RSFCneg) different weights 

(indicated by their loading values) such that a maximally high correlation with age is 

achieved. Inspecting the loading values within one component is then informative on 

which connectivity estimates particularly contribute to the age prediction. To define a 

model with an appropriate number of components that has good predictive ability, i.e. 

explaining sufficient amount of variability without overfitting the model, PLSR 

performed a permutation approach with cross-validation (Mevik & Wehrens, 2015; 

Mevik et al., 2020). Thereby, the model for age prediction was repeatedly calculated with 
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different numbers of components, each run omitting one individual and determining 

cross-validated residual values (leave one out cross-validation to depict the difference 

between the actual response and predicted response value). Root mean squared error of 

prediction (RMSEP) were calculated by summing all squared prediction errors indicating 

the model’s predictive ability. Based on the RMSEP curve (i.e. one RMSEP for each 

number of included components), a permutation test was performed assessing the models’ 

performance. Starting at the minimum RMSEP, it successively excluded components 

until there is no further significant drop in performance found (α = .01) (for detailed 

description of PLSR also see Mevik and Wehrens (2015) and Mevik et al. (2020)). 

To validate the model’s predictive ability in the current study, the PLSR model 

was built on a training data set (n = 382, 60% of the initial sample) and subsequently 

applied to a test dataset (n = 254, remaining 40% of the initial sample) (Figure 17, A). 

Thereby, age of the test dataset was predicted and subsequently compared to the 

individuals’ chronological age. To assure model performance across different training 

and test datasets to be comparable, the age prediction procedure was repeated 5,000 times 

randomly resampling the training and test datasets. Finally, the prediction model’s 

legitimacy was validated by comparing the RMSEP based on real data to the RMSEPs of 

5,000 null models. Null models were created by randomly scrambling age and 

connectivity estimates and reperforming the age prediction procedure (i.e. dividing data 

into training and test dataset, train the model on the training dataset and predict age of the 

test dataset).  

After validating the model’s prediction ability, focus of the analysis was the 

investigation of the defined components (Figure 17, B). As described above, in PLSR 

connectivity estimates are combined in a way such that they show the highest possible 

correlation with age. The direction of correlation between age and the component is 

indicated by the component’s score values. Score values represent the degree to what 

extent a subject is expressed by this specific component. As an example, within the 

current study, a negative correlation between age and the score values of a component 

can be interpreted as age-related decreases of connectivity estimates. Thereby, loading 

values indicate how the correlation between age and the component’s score value is 

applicable for the particular connectivity estimate: Connectivity estimates with positive 

loading values are in line with the overall component’s correlation, i.e. showing the same 

direction of correlation with age as the components’ score values. In turn, negative 

loading values show the opposite association with age as compared to the score values, 

i.e. age-related increases with whole component decreases and vice versa. For this second
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step of the analyses, the training and test dataset were reassembled and the predefined 

and validated PLSR model was conducted on the whole group. This was done in order to 

maximize the representativeness of interpretation on the component’s composition for the 

largest group of older adults. Finally, to enhance reliability of the connectivity estimates’ 

loading values, a bootstrap procedure was included estimating CIs for loading values of 

the connectivity estimates (90% sample size, 5,000 iterations). Loading values that did 

not reliably contribute to age prediction were set to zero.  

For each component, PLSR calculated a loading value for each connectivity 

estimate resulting in 2,400 loading values for each component (400 values for each 

modality: intra- and inter-network for SC, RSFCpos, RSFCneg). For the purpose of 

interpretability, network-wise mean loading values (the average across all loading values 

within one network) were additionally calculated to make the strength of loading values 

also comparable across networks. Network-wise loading values were visualized for each 

component separately for intra- and inter-network SC, RSFCpos and RSFCneg as bar plots. 

Additionally, node-wise loading values were plotted onto the brain surface to also allow 

the distribution of loading values to be interpretable (node-wise loading values are 

additionally depicted as bar plots in Supplementary Figures 3 & 4). With regards to 

previous literature indicating frontal regions to show different age-related decreases as 

compared to the rest of the brain, loading values between frontal regions and the rest of 

the brain were additionally compared. Therefore, mean average loading values of regions 

located within the frontal lobe were calculated and compared these to the mean average 

loading values located in the rest of the brain using an undirected two-sample t-test. 
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Figure 17:        Illustration of the second’s study statistical procedure. 
A) the PLSR model validation process B) the model application. PLSR = Partial Least Square Regression. CI = Confidence Interval.
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5.2 Results 

Aim of the second study was to relate RSFC to SC differences and to unveil RSFC and 

SC differences that are together age-characteristic. Results showed that region-wise 

patterns of SC and RSFC estimates are indeed predictive of older adults’ age. 

Furthermore, they appear to be interdependent with the frontal lobe’s SC and SMN 

network’s RSFC being particularly age-characteristic. Results are discussed in more 

detail in the following, first describing the results of the model validation, i.e. whether 

connectivity estimates are indeed predictive for older adults’ age. Second, the component 

compositions are described, i.e. indicating which connectivity estimates were found to be 

particularly age-characteristic.  

The model validation process indicated two components to be optimal for age 

prediction, explaining sufficient variance without overfitting the model (Table 9, Figure 

18).  

Table 9:           PLSR model validation: Results of the cross-validated permutation approach. 
Cross-validated permutation approach was performed on the training dataset (n=382) indicating the 

calculated RMSEP, the % variance in brain connectivity explaining the % of variance of age by including 
up to 10 components. 

Component 1 2 3 4 5 6 7 8 9 10 

RMSEP 6.229 5.676 5.54 5.483 5.497 5.526 5.601 5.679 5.775 5.830 

% variance 

explained 

age 8.355 11.09 19.95 22.78 25.34 28.26 29.67 30.98 32.20 33.23 

connectivity 24.44 54.38 60.52 72.61 82.16 86.19 91.71 94.59 96.79 98.11 

Figure 18:        PLSR model validation: RMSEPs of the cross-validated permutation approach. 
Cross-validated permutation approach performed on a training data set (n= 382) revealed two components 

(blue dashed line) to be optimal for age prediction. 
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Applying the defined prediction model on 5,000 different combinations of training and 

test datasets, not only correlations between predicted and chronological age were 

estimated, but additionally their CIs. Including one component into the prediction model 

(RMSEP = 6.19, sd = .112), a correlation of rmean = .426 (sd = .048) between predicted 

and chronological age was obtained explaining 8.29% variance of age (sd = .48), 

visualized in Figure 19 (A and B, green). Including additionally the second component 

into the prediction model (RMSEP = 5.78, sd = .138) revealed a considerable increase of 

prediction accuracy explaining 12.72% of age variance (sd = 1.36) and resulted in a 

correlation of rmean = .540 (sd = .050) between predicted and chronological age (Figure 

19, A and B, violet). Importantly, both models (i.e. with one as well as with two 

components) revealed a significantly better prediction accuracy for prediction as 

compared to null models. Thus, intra- and inter-network SC and RSFC estimates of 400 

brain regions was found to be predictive of older adults’ age (1st component: RMSEPmean: 

6.19, RMSEPnullmodel: 7.27, p < .001, 2nd component: RMSEPmean: 5.78, RMSEPnullmodel: 

7.69, p < .001), visualized in Figure 19, C. 
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Figure 19:        Results of the PLSR model validation process. 
(A) Distribution of correlation values between chronological and predicted age based on 5000 different

training and test splits including one component (green: rmean = .426, p > .001, lCI = .425, uCI= .427) and

two components (violet: rmean = .540, p > .001, lCI = .538, uCI= .541). (B) Scatterplot of the correlation

between predicted and chronological age including one component (green) or two components (violet):

predicted values depict mean values (errorbars: +/- 1*sd) from 5000 different training and test splits. (C)

Distribution of RMSEP from 5000 created null models including one component (green: RMSEPnullmodel =

7.27) and two components (violet: RMSEPnullmodel = 7.69). Colored points indicate the RMSEP of the real

model (green: RMSEP1comp = 6.19, violet: RMSEP2comp = 5.78).

With the model’s validation, RSFC and SC estimates can be assumed to be predictive of 

older adults’ age. Main objective of this second study was then to relate RSFC to SC and 

analyze SC and RSFC differences that are together characteristic for the older adults’ age. 

Therefore, the prediction model was applied to the whole group particularly focusing on 

the composition of the defined components which can be derived from the components 

specific score and loading values (as described in 5.1.5).  

Applying the prediction model to the whole dataset, component one was found to 

comprise a unique aspect of the overall variance in brain connectivity of 8.2% explaining 
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21.9% of the variance in age (RMSEPcomp1= 6.172, mean average prediction error = 5.0 

years). Component two, comprising another 4.9% of variance in brain connectivity 

explained further 20.3% of variance in age (RMSEPcomp2= 5.728, mean average 

prediction error = 4.2 years). For both components, lower score values with increasing 

age were found (rcomp1: -.47, rcomp2: -.45, both p < .001), visualized in Figure 20. Based on 

this negative correlation between age and the components’ score values, positive loading 

values of connectivity estimates can be interpreted as age-related connectivity decreases, 

while negative loading values indicate connectivity increases. Additionally, higher 

loading values indicate a stronger association with age. 

Figure 20:        Individual PLSR score values across age based on the whole sample. 
Score values of the first (green: r= -.47, p < .001, 21.9% explained variance) as well as second (violet: r= -

.45, p < .001, 4.5% explained variance) component decrease with increasing age. 

In the following sections, loading values will be successively described for component 

one and component two. For each component, this will include 2,400 loading values 

comprising 400 node-wise intra- and inter-network connectivity estimates for each 

modality (SC, RSFCpos as well as RSFCneg). Node-wise loading values are plotted onto 

the brain surface to demonstrate the loadings’ distribution across the brain (Figures 21, 

22). As described in the Methods section (5.1.5), network-wise mean loading values 

(networkmean(sd)) were additionally calculated to make the strength of loading values 

more easily interpretable across networks. They are visualized as bar plots in Figures 21 

and 22. As of note, node-wise loading values for each component and modality are 

additionally visualized as bar plots in Supplementary Figures 3 and 4 which can be 

informative for the variability of loading values within a network. 
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Figure 21:        Visualized region- and network-wise loading values of PLSR component one. 
Node-wise loading values of the 1st component for intra- (A, C, E) and inter-network (B, D, F) connectivity. 

Loading values for SC (A, B),  RSFCpos (C, D) and RSFCneg (E, F) are projected onto an inflated average 

surface (Q1-Q6_R440, available under https://db.humanconnectome.org) where positive loadings are 

colored in blue and negative values in red (for node-wise bar plots see Supplementary Figure 3). Network-

wise mean loading values (SD) are visualized as bar plots (colored according to their respective network). 
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Within the first component, positive loading values for the intra-network RSFCpos of all 

networks were found (Figure 21, C), i.e. higher age being associated with lower intra-

network RSFCpos. Particularly, loading values of regions within primary processing 

networks were found to be prominently high (VNmean=.028(.002), SMNmean=.036(.002)) 

indicating the highest informative value for the prediction of the older adults age, i.e. 

strongest correlations with age. Regarding the inter-network RSFCpos (Figure 21, D), 

positive loading values were found for the VN, SMN and DAN, while the FPN and DMN 

showed overall negative loading values. In fact, looking at the node-specific loading 

values (Supplementary Figure 3, D), regions within the LN, VAN, FPN and DMN 

showed divergent directions with both positive and negative loading values.  

In terms of negative correlations, negative loading values for the intra-network 

RSFCneg were found regarding all networks (Figure 21, E & Supplementary Figure 3, E) 

and positive loading values for the inter-network RSFCneg regarding all networks (Figure 

21, F and Supplementary Figure 3, F). Therewith, in the first component higher 

anticorrelations within networks and lower anticorrelations between networks are 

associated with higher age.  

Notably, comparing RSFCpos and RSFCneg, intra-network RSFC showed very 

much opposing effects across all networks with overall positive loading values for 

RSFCneg and negative loading values for RSFCpos (Figure 21, C & E and Supplementary 

Figure 3, C & E). In contrast, for inter-network RSFC, FPN and DMN showed contrasting 

effects, while the VN and SMN showed positive loading values in both, RSFCpos as well 

as RSFCneg (Figure 21, D & F and & Supplementary Figure 3, D & F).  

Concurrent to the depicted age-related RSFC differences, positive loading values 

for SC concerning all networks distributed across the whole brain were found (Figure 21, 

A & B and Supplementary Figure 3, A & B) indicating an overall age-related decrease in 

SC. Positive loading values pertained to both, intra- and inter-network SC, indicating SC 

decreases between nodes within their respective networks (Figure 21, A & 

Supplementary Figure 3, A) as well as between nodes belonging to different networks 

(Figure 21, B and Supplementary Figure 3, B). Specifically, the contribution of each 

region’s SC for age prediction was found to vary across the brain (indicated by the 

strength of loadings) showing particularly high loading values for regions within the 

frontal lobe (intra-network: Frontalmean=.033(.001), Restmean=.024(.001); inter-network: 

Frontalmean=.032(.001), Restmean=-.024(.001)). Comparing loading values between brain 

areas within the frontal lobe as compared to the rest of the brain revealed significant 

higher loading values in the frontal lobe for intra-network SC (t=4.8, p<.001) as well as 
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inter-network SC (t=5.6, p<.001) (Figure 22). Thus, SC differences in frontal brain 

regions seem to be most highly characteristic for the participants’ age with lower SC 

being associated with higher age. 

Figure 22:        The 1st component’s SC loading values within the frontal lobe and the rest of the brain. 
Node-wise loading values for intra- (A) and inter-network (B) are network-wise ordered and colored blue 

as its location is within the frontal lobe. Additionally, mean loading values (SD) across all regions within 

the frontal lobe (blue) or the rest of the brain (grey) are depicted for intra- (I) and inter-network (II) SC and 

statistically compared (t-test: significant at p<.05, indicated by an asterisk). 

Cohesively, within the first component a combination of low SC, RSFCpos and high 

anticorrelations within all networks was found to be indicative for higher age. Between 

networks, higher RSFCpos was associated with higher age only for higher-order networks 

(particularly including the FPN and DMN). Concurrently, higher age was associated with 

higher RSFCneg between all networks. Particularly, within the first component, higher age 

was predicted by (and is therewith associated with) low intra-network RSFCpos of primary 

processing networks, high inter-network RSFCpos of higher-order networks and low SC 

within and across all networks (with an emphasis of regions located within the frontal 

lobe). 
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Figure 23:        Visualized region- and network-wise loading values of PLSR component two. 
Node-wise loading values of the second component for intra- (A, C, E) and inter-network (B, D, F) 

connectivity of SC (A, B), RSFCpos (C, D) and RSFCneg (E, F) projected onto an inflated average surface 

(Q1-Q6_R440, available under https://db.humanconnectome.org) where positive loadings are colored in 

blue and negative values in red (for node-wise bar plots see Supplementary Figure 4). Network-wise mean 

loading values (SD) are visualized as bar plots (colored according to their respective network). 

Regarding the second component’s intra-network RSFC, for RSFCpos negative loading 

values were applicable to all networks and particularly prominent for the SMN 

(SMNmean=-.046(.003)), FPN (FPNmean=-.034(.003)) and DMN (DMNmean=-.031(.004)) 
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(Figure 23, C & Supplementary Figure 4, C). For intra-network RSFCneg, positive loading 

values for the SMN and FPN were found, while all other networks showed negative 

loading values. Comparing the intra-network RSFCneg loading distribution across the 

brain to these of RSFCpos (Figure 23 and Supplementary Figure 4, C & E), opposing 

effects were apparent: in regions, where the intra-network RSFCpos was low, RSFCneg 

was high and vice versa. 

Regarding the inter-network RSFC, higher RSFCpos as well as higher RSFCneg 

were found to be indicative for higher age (Figure 23, D & F). This was applicable to all 

networks with especially strong negative loading values within the SMN (SMNmean=-

.051(.004)). 

Regarding the second component’s SC, positive as well as negative loadings were 

found for both, the intra- as well as inter-network SC. As of note, all networks comprised 

both, regions that show positive as well as negative loading values (Supplementary Figure 

4, A & B). Looking at the loading distribution across the brain, loading values for inter- 

and inter-network SC were again found to be similarly distributed across the brain (Figure 

23, A & B and Supplementary Figure 4, A & B). Also within this component, positive 

loadings pertained significantly more to the frontal lobe as compared to the rest of the 

brain (intra-network: Frontalmean=.01(.004), Restmean=.001(.004), t=2.9, p=.004; inter-

network: Frontalmean=.002(.004), Restmean=-.002(.004), t=3.4, p<.001), visualized in 

Figure 24. Thus, lower intra- as well as inter-network SC of particularly the frontal lobe 

were associated with higher age. In contrast, negative loading values particularly 

pertained to regions located in posterior and temporal parts of the brain (Figure 23, A & 

B).  

Noticeable, comparing the node-wise intra-network SC with RSFCpos
(Supplementary Figure 4, A & C), contrasting effects were found particularly for the 

SMN and FPN: in regions where SC showed positive loadings, RSFCpos showed negative 

loadings indicating regions with low SC showing rather high RSFCpos and vice versa 

(Figure 23, B & D and Supplementary Figure 4, B & D). 



70 

Figure 24:        The 2nd component’s SC loading values within the frontal lobe and the rest of the brain. 
Node-wise loading values for intra- (A) and inter-network (B) are network-wise ordered and colored blue 

as its location is within the frontal lobe. Additionally, mean loading values (SD) across all regions within 

the frontal lobe (blue) or the rest of the brain (grey) are depicted for intra- (I) and inter-network (II) SC and 

statistically compared (t-test: significant at p<.05, indicated by an asterisk). 

In summary, within the second component higher age was characterized by a combination 

of high intra- and inter-network RSFCpos accompanied by pronounced RSFCneg across 

networks especially regarding the SMN. Within this component, SC decreases 

particularly affected frontal regions, while posterior and temporal parts remained rather 

stable. Remarkably, the second component comprised inverse effects regarding the intra-

network SC, RSFCpos and RSFCneg: Low SC was accompanied by high RSFCpos and low 

RSFCneg. In turn, regions with high SC showed rather low RSFCpos (Figure 23, A & C & 

E).  
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5.3 Discussion: Structural and Functional Connectivity Relation 

Using the multivariate approach of PLSR, aim of the second study was to identify 

regional RSFC and SC differences, that concurrently occur and are therefore together 

characteristic for the older adult’s brain. Therewith, the study aimed at relating RSFC 

differences to SC differences to unveil potential sources for the depicted age-related 

RSFC differences as found within the first study. Results demonstrated that combined 

whole-brain RSFC and SC estimates of 400 brain regions can be used to predict the 

chronological age of older adults. Thereby, the contributions to age prediction were found 

to be different among modalities (RSFC or SC) and across brain regions, which provides 

insights into the relation between SC and RSFC, discussed in the following.  

Functional connectivity 

In terms of positive intra-network RSFC, overall lower connectivity (especially regarding 

the VN and SMN) were found to be characteristic for higher age within the first 

component. Interestingly, the opposite pattern was found for the second component, such 

that higher positive intra-network RSFC was indicative for higher age, which was 

particularly applicable to the SMN. These results are accompanied by complementary 

effects of negative RSFC indicating that in older adults, regions of the respective 

networks not only work less synchronized but even more anticyclical as comprised by the 

first component. In turn, if the positive intra-network RSFC is rather high in older adults, 

captured by the second component, regions of the respective networks seem to work more 

coherently with only little anticorrelations. As worked out and discussed in the first study, 

the SMN has been shown to play a particular role in older adults. While in younger adults, 

aging effects seem to predominantly affect higher-order networks (Betzel et al., 2014; 

Chan et al., 2014; Ferreira et al., 2016; Grady et al., 2016; Mowinckel et al., 2012; Siman-

Tov et al., 2016; Spreng et al., 2016; Varangis et al., 2019), age-related differences in 

older adults were found to particularly affect primary processing networks (see 4.2.1 and 

Perry et al. (2017); Zonneveld et al. (2019)). Importantly, lower intra-network RSFC of 

primary processing networks are associated with lower cognitive performances (see 4.2.3 

and Perry et al. (2017)). Therewith, the first component may reflect the typical aging 

pattern in older adults that is associated with a cognitive performance decline. In turn, 

preserved RSFCpos in primary processing networks as captured by the second component 

may hint at a less accelerated aging process potentially showing less severe cognitive 

decline.  



72 

In terms of inter-network RSFCpos, for higher-order networks a similar effect was 

found for both components indicating higher network integration in higher age. This is in 

line with previous results suggesting positive RSFC between higher-order networks to 

increase across the lifespan (Betzel et al., 2014; Cao et al., 2014; Chan et al., 2014; 

Ferreira et al., 2016; Mowinckel et al., 2012; Tsvetanov et al., 2016; Varangis et al., 2019) 

and also within older adults (see 4.2.1 and Zonneveld et al. (2019)). While higher-order 

networks show similar effects in both components, primary processing networks were 

again found to show the opposite effects across the components with lower RSFCpos 

within the first and higher RSFCpos within the second component being indicative for 

higher age. Overall higher positive inter-network RSFC may hint at a compensational 

attempt, as an additional functional recruitment of other networks is thought to counteract 

brain damages to maintain behavioral functions as stable as possible (Cabeza et al., 2002; 

Heuninckx et al., 2008; Iraji et al., 2016; Marstaller et al., 2015; Park & Reuter-Lorenz, 

2009; Pistono et al., 2021). However, for compensational purposes one would suggest 

specific minor coactivations of networks as discussed in 4.3.2 (Figure 15). While the first 

component is depicted by inter-network RSFCpos increases of only higher-order networks, 

the second components inter-network RSFCpos increases affect the whole brain and are 

concurrently accompanied by higher negative inter-network RSFC, i.e. anticorrelations. 

The combination of increasing positive as well as negative RSFC may point at a 

dedifferentiation process in which an uncoordinated, diffuse activation pattern may not 

be conducive for behavioral performances (Chan et al., 2017; Chan et al., 2014; 

Colcombe et al., 2005; Goh, 2011; Nashiro et al., 2017; Park et al., 2004). 

Subsuming, RSFC shows very much opposing effects between the two 

components, less applicable to the inter-network RSFCpos of FPN and DMN, but very 

much driven by the SMN. This may indicate that there exist two aging patterns 

particularly defined by the acceleration of RSFCpos in the SMN. As lower RSFC of the 

SMN was shown to be characteristic for an age-related decline in older adults and 

additionally important for cognitive performance (see 4.2.4 and Madden et al. (2017); 

Perry et al. (2017)), the first component may reflect the typical aging pattern in older 

adults that is associated with a cognitive performance decline. In contrast, the second 

component with overall preserved RSFC may characterize a less pronounced aging 

process or at least a different aging strategy, potentially picturing compensational 

attempts. The contrasting effects in RSFC between the two components are especially 

interesting when looking at the concurrently occurring SC effects, discussed in the 

following. 
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Structural connectivity 

Regarding SC, in both components lower SC particularly within the frontal lobe was 

found to be characteristic for higher age. These effects were found to be very similar not 

only regarding the two hemispheres but also for intra- and inter-network connectivity 

indicating that SC not only decreases between regions belonging to the same network but 

also between regions of different networks. Previous investigations on SC are not as 

comprehensive as for RSFC, but results based on lifespan studies overall show consistent 

effects, for reviews see (Antonenko & Floel, 2014; Damoiseaux, 2017; Gunning-Dixon 

et al., 2009; Zuo et al., 2017). Across the lifespan, inverted U-shaped trajectories of white 

matter integrity were found (i.e. increases in SC from childhood to early adulthood 

followed by decreases in SC until late adulthood) using different measures such as 

fractional anisotropy or mean/axial/radial diffusivity (Bartzokis et al., 2012; Betzel et al., 

2014; Burzynska et al., 2010; Damoiseaux & Greicius, 2009; Imperati et al., 2011; 

Mwangi et al., 2013; Westlye et al., 2010). Multiple studies used graph-theoretical 

estimates to quantify age-related differences and found overall decreasing connectivity 

from adulthood onwards, i.e. indicated by lower local and global efficiency (Betzel et al., 

2014; Gong et al., 2009; Zhao et al., 2015; Zuo et al., 2017). Previous results on lifespan 

development indicate white matter of the frontal lobe to be particularly vulnerable to the 

aging process showing the greatest deteriorations across age, while white matter of 

temporal and occipital regions was found to be relatively preserved (Antonenko & Floel, 

2014; Gunning-Dixon et al., 2009; Rojkova et al., 2016; Salat, 2011; Salat et al., 2005; 

Zhao et al., 2015). This is very much in line with the current results showing frontal 

regions being most affected and thereby highly characteristic for age. In fact, within the 

current study SC decreases of temporal and occipital regions are also seen, though only 

within the first component. As previous lifespan studies found temporal and occipital 

regions to be relatively preserved across age (Zhao et al., 2015), a decline of SC in these 

regions may be a specific effect within particularly older adults. This may hint at a more 

accelerated age-related decline affecting the whole brain captured by the first component. 

With regards to RSFC, the effects are very much in line in the way that the first 

component captures connectivity patterns that may be associated with advanced aging 

showing more widely affected SC decline and RSFCpos decreases of particularly the 

SMN. In contrast, the second component is characterized by preserved SC in temporal 

and occipital regions and overall high RSFCpos potentially hinting at a less accelerated 

aging process with lower cognitive decline. 

Relation of functional and structural connectivity 
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Results of the current study indicate RSFC and SC to be both important for age prediction, 

each showing age-related differences that are predictive of older adults’ age. In the 

following section the relation between these differences will be addressed by comparing 

the strengths of loadings between modalities, from which the importance for age 

prediction and simultaneous occurrence can be derived.  

Within the first component, SC was found to have overall higher loading values 

(applicable to all networks with a slight emphasis on the FPN) as compared to positive 

and negative RSFC pointing at the highest relevance of SC for age prediction, i.e. being 

most characteristic for aging differences. This is in line with previous results showing 

that region-wise SC has a stronger negative age-connectivity correlation as compared to 

RSFC (Zimmermann et al., 2016). The importance of SC for age prediction is closely 

followed by positive intra-network RSFC of primary processing networks underpinning 

the idea of a central role of particularly the SMN during older age (Madden et al., 2017; 

Perry et al., 2017; Stumme et al., 2020; Zonneveld et al., 2019). Regarding the second 

component, high loading values in SC only pertain to a small number of regions, while 

the majority of regions have small loading values. Here, RSFC shows overall high loading 

values regarding both, positive and negative RSFC pointing at a significant role of RSFC 

for age prediction in a situation when SC is rather stable. 

Remarkably, looking at the second component more specifically, very much 

opposing effects were found for the intra-network SC and RSFC, especially applicable to 

sensorimotor, frontal and superior temporal regions. Here, lower SC at higher age is 

accompanied by higher positive RSFC, while regions that are rather stable over age in 

terms of SC (particularly temporal regions) show lower positive RSFC at higher age. 

Since SC is the structural framework for functional cross-talk between brain regions, one 

would rather expect a positive relation between SC and RSFC and therefore RSFC to also 

decrease in regions with lower SC as it is the case within the first component. RSFC is 

constrained by the large-scale anatomical structure of the cerebral cortex (Davis et al., 

2012; Salat, 2011) and previous work investigating the SC-RSFC relation indeed found 

SC to mediate the according RSFC of brain networks (Jung et al., 2017). Still, since RSFC 

reflects coherent activity of two regions described by correlational values, a functional 

connection can also indirectly exist without a direct structural linkage, i.e. via a third 

“connector” region. Detours of RSFC including connector regions could be interpreted 

as a beneficial strategy to cope for the age-related SC decline, potentially picturing the 

attempt to maintain behavioral performance (Cabeza et al., 2002; Marstaller et al., 2015; 

Park & Reuter-Lorenz, 2009; Pistono et al., 2021). A higher recruitment of brain regions 
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may be accompanied by increasing wiring costs but may also result in a higher cognitive 

reserve, i.e. performance maintenance (Franzmeier et al., 2018). Hence, SC decline of a 

white matter pathway may be compensated by higher positive RSFC using alternative 

pathways, resulting in regional SC decreases accompanied by increases of positive RSFC 

which is expressed in the second component. This is in line with Zhu et al. (2014) who 

found lower SC to be accompanied by stronger RSFC, which was associated with lower 

performance in network specific behavioral functions. Further, Reijmer et al. (2015) also 

focused on older adults and found RSFC and SC to be related, with a higher relation being 

indicative for better cognitive performance. Differences become apparent, though, when 

comparing results based on older adults to those on lifespan samples. Across the lifespan, 

the age-specific decline of SC and RSFC was found to be not or only weakly related and 

cognitive performance was predominantly explained by reductions in SC, less so by 

RSFC (Fjell, Sneve, Grydeland, Storsve, Amlien, et al., 2017; Fjell, Sneve, Grydeland, 

Storsve, & Walhovd, 2017; Hirsiger et al., 2016; Tsang et al., 2017). In turn, the 

relationship between RSFC and cognitive performance was strongest in cases where the 

rate of reduction of SC was lowest, implying a rather independent impact of SC and RSFC 

on cognitive performance (Fjell et al., 2016; Hirsiger et al., 2016). With regards to the 

current results, this underpins the significant role of RSFC differences in cases where SC 

is stable. Hence, there may be a different relation of RSFC and SC applicable in older 

adults as compared to the whole lifespan. For older adults, future studies on RSFC-SC 

relations are essential to investigate what its potential impact on cognitive performance 

may be. 
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5.4 Conclusion 

To the current state of research, there exist a variety of studies showing that across the 

aging process not only the brain’s RSFC changes, but also the SC. What is still a matter 

of debate is how these differences may be related. For the current work this relation was 

of particular interest as it may unveil origins of the age-related RSFC differences as 

depicted by the first study. Therefore, this second study focused on the interdependency 

of region-wise SC and FC differences and how these are together characteristic for older 

adults’ age. Results revealed that while the SC of the frontal lobe was found to be highly 

age characteristic, differences in the RSFC of the SMN are predominantly indicative for 

older peoples’ chronological age. The results additionally pointed at two differential age 

progressions, in which the combination of low SC across the whole brain and low 

RSFCpos of particularly primary processing networks in older adults may be understood 

as an accelerated aging process. Instead, older adults with overall higher RSFCpos 

(especially preserved intra-network RSFCpos of the SMN) paired with less SC decreases 

in posterior and temporal brain regions potentially experience a more attenuated aging 

process. Further multimodal studies are warranted to investigate the interrelation of SC 

and RSFC in older adults with its impact on cognitive performance to evaluate different 

progressions of age-related connectivity changes.  

In the following section (6) the results of the first and second study will be related to each 

other and collectively discussed. After addressing some limitations of this work (7), a 

summary will be given to finalize the present work (8). 
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Cross-study Discussion and Outlook 
With regards to the demographic change, healthy aging is becoming increasingly 

important allowing an independent living and autonomy up to high age. However, the 

older adult population is depicted by highly inter-individually variable age progressions 

with some adults showing earlier and steeper cognitive decline as others (Hedden & 

Gabrieli, 2004; Salthouse, 2004). Unveiling neurobiological sources for this high 

heterogeneity depicts a great potential for e.g. the development of diagnostic and 

therapeutic possibilities and the determination of risk and protective behavioral factors. 

With the current work it was aimed to contribute to the discovery of neurobiological 

sources that may account for differences in age progressions. Building upon previous 

results that suggest cognitive decline to be associated with local properties of brain 

structure and functional activity (Raz et al., 2005; Whalley et al., 2004), the current work 

investigated how brain regions are interconnected across the whole brain and how this 

whole-brain interconnectivity is related to age, sex and cognitive performance. Therefore, 

two studies were conducted on particularly the older adults’ population in which a high 

inter-individual variability in cognitive performance is prevalent.  

Within the first study, whole connectivity was estimated based on resting-state FC 

(RSFC). Resting-state has the great advantage that neural activations are measured in rest, 

independent to any task performance, which allows to look at the brain in a holistic 

perspective including activity (differences) across the whole brain at once. Based on the 

whole-brain RSFC pattern, graph-theoretical parameters were estimated network-wise, 

indicating how strong brain regions are connected within their according networks or 

between different networks. With regards to previous literature on lifespan studies (Betzel 

et al., 2014; Cao et al., 2014; Chan et al., 2014; Ferreira et al., 2016; Jockwitz & Caspers, 

2021; Mowinckel et al., 2012; Tsvetanov et al., 2016; Varangis et al., 2019), it was 

hypothesized that with increasing age the RSFC between networks would increase while 

the RSFC within networks decreases. And indeed, this is exactly what the results of the 

first study depicted indicating an age-related shift from rather specialized and segregated 

networks towards a higher network integration. Therewith, the current work not only 

underpins the results based on lifespan studies, but additionally expands the current state 

of research by showing that this trend also persists into older adults. Moreover, as 

compared to lifespan studies, results of the current work indicate different networks to be 

affected in older adults: While predominantly higher-order networks were found to 

change across the lifespan (for review see Jockwitz and Caspers (2021)), in older adults 

particularly the primary processing networks seem to be age-sensitive. This is particularly 
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interesting with regards to the high cognitive performance differences that is 

characteristic for the older adult population.  

In terms of cognitive performance differences, the current state of research 

suggests lower RSFC within networks to be associated with lower performance (for 

review see Wig (2017)). In fact, results of this work underpin these suggestions showing 

a positive correlation between the intra-network RSFC and cognitive performance. 

Importantly, this effect is related to the same networks that have also shown the highest 

age-sensitivity (VN and SMN) insistently pointing at a high relevance of primary 

processing networks for older adults’ age progressions. Testing these coinciding effects 

statistically revealed that the primary processing networks’ RSFC indeed influence the 

cognitive performance differences in aging. While the current state of research allowed a 

rather conclusive hypothesis regarding the association between intra-network RSFC and 

cognitive performance, it is still a matter of debate whether the age-related shift towards 

a higher network integration would be associated with higher or lower performances, i.e. 

a compensation or dedifferentiation process. Accordingly, results of the current work 

showed both: while lower performances were positively associated with the RSFC 

between primary processing networks, it was negatively associated with the RSFC 

including higher-order networks. Hence, while the decline of RSFC within and between 

primary processing networks is found to be insistently bad for cognitive performance, 

increases to higher-order networks seem to also be non-beneficial in terms of cognitive 

maintenance in older adults, rather pointing at a dedifferentiation process. In fact, the 

current work introduced a schematic model in which compensation and dedifferentiation 

processes are not mutually exclusive but rather a merging process, in which a minor 

recruitment of additional brain areas may be initially beneficial (in younger adults) but 

superseded by increasingly diffuse coactivations (in older adults) eventually resulting in 

cognitive decline. Finally, the first study additionally addressed sex-related RSFC 

differences and found males and females to be depicted by significant differences in their 

network architecture. Interestingly, with males showing a significantly higher network 

integration as compared to females, the results very well match those of the very recent 

study (also based on the older adults’ 1000BRAINS cohort) indicating that the cognitive 

profile of males is rather globally organized, meaning that cognitive performance in males 

are significantly more interrelated as compared to those in females (Jockwitz et al., 2021). 

With the first study, the current work identified a potential neurobiological factor 

that may account for the highly variable cognitive performances in older adults, i.e. a 

reorganization process which is particularly driven by RSFC decreases of primary 
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processing networks. Building upon these results, the second study went one step further 

and aimed at unveiling potential origins for the depicted RSFC differences. In fact, as 

prerequisite to actually exchange information, brain regions have to be connected via 

physical connections, i.e. axons. Physical connections can indirectly be measured by DWI 

which similar to the whole-brain RSFC, allows the investigation of SC between brain 

regions across the whole brain. Although SC is the underlying construct for brain regions 

to exchange information, RSFC cannot yet be directly linked to SC, for review see 

Straathof et al. (2019). Though, by investigating RSFC and SC differences that 

concurrently occur across age, dependencies between RSFC and SC may be uncovered 

that contribute to the understanding of age-related RSFC differences as found within the 

first study. Therefore, in the second study the relation between whole-brain RSFC and 

SC was analyzed based on a subset of the 1000BRAINS participants that had both, 

resting-state data as well as diffusion data available.  

As statistical method to unveil the SC – RSFC relation, an age-prediction 

approach was utilized. Thereby, a prediction model was built based on RSFC and SC 

estimates of a training dataset and subsequently used to predict the chronological age of 

a test dataset. Given the model succeeds in predicting the age of the unknown dataset, 

which indeed was the case within the current work, the prediction model can be further 

analyzed revealing which connectivity estimates are important for age-prediction, i.e. 

particularly characteristic for the aging process. Thereby, SC and RSFC differences that 

concurrently occur across age can be detected. The age-prediction approach revealed 

differences of the SMN to be most age-characteristic in terms of RSFC, again pointing at 

the central role of primary processing networks’ RSFC in older adults and additionally 

aggravating the relevance to particularly the SMN. Interestingly, RSFC decreases within 

the SMN were found to be accompanied by whole-brain SC decreases. Concurrently, 

inter-network RSFC increases only pertained to small parts of higher-order networks 

(FPN and DMN). With regards to first, the results of the first study indicating lower intra-

network RSFC of the primary processing networks to be associated with cognitive decline 

and second, results of previous work indicating SC decreases of temporal and occipital 

regions to only occur at later stages of the aging process (Zhao et al., 2015), these effects 

may be understood as a proceeded aging process. In contrast, in cases where the RSFC 

of the SMN was rather stable or even showed age-related intra-network RSFC increases, 

SC decreases only pertained to regions located within the frontal lobe. Hence, a less 

severe SC decline was found to be accompanied by higher RSFC, not only related to the 

SMN but to the whole brain. All together, these results suggest RSFC to increase in cases 
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where the decline of SC is not yet advanced. This may be understood as the attempt to 

maintain cognitive performance by a functional overactivation and recruitment of 

additional intact (structurally well connected) regions. Though, as the SC decrease further 

proceeds, RSFC may also overall decrease potentially resulting in cognitive decline. 

Future studies are warranted to investigate how the SC-RSFC relation in older adults are 

associated with cognitive performance.  

Altogether, results of this work point at a highly relevant role of primary processing 

networks (especially the SMN) in older adults: RSFC decreases within primary 

processing networks were found to be associated with cognitive performance decline. An 

overactivation and additional recruitment of brain networks (potentially to maintain 

cognitive performance) only occurs in cases where the SC decline is not yet highly 

progressed. Possibly, the functional recruitment of additional brain areas particularly 

occurs as the underlying structural connectome allows an efficient compensation. For 

example, RSFC may increase in order to compensate a loss of local functionality e.g. as 

a result of grey matter volume decline (Park & Reuter-Lorenz, 2009; Pistono et al., 2021; 

Reuter-Lorenz & Cappell, 2008). With intact structural connections, the consultation of 

additional brain regions indeed could be beneficial. However, with proceeding SC 

decline, the underlying construct to exchange information between regions diminishes 

restricting the possibility for successful compensation.  

Particularly with regards to the efficiency of compensation and information 

transfer, it may be valuable to also consider fiber length distributions. Recent work found 

that fiber tract lengths systematically differ across the cortex and importantly also in 

relation to the functional complexity of brain networks (Bajada et al., 2019). While more 

complex functional networks (i.e. higher order networks) comprise tracts of various 

lengths, primary processing networks rather imply short range fibers. This could hint at a 

relation between the structural integration of these networks and the susceptibility to 

aging: with lower tract lengths, the capability of compensation may be more limited as 

compared to regions being integrated across the whole brain, i.e. by a wide repertoire of 

tract lengths. Fundamentally, to directly link SC (potentially also tract lengths) to RSFC 

changes as well as their behavioral consequences, longitudinal research is highly desired. 

Besides the great potential of longitudinal studies, a recently emerging and highly 

promising field of research is the computational neuroscience. Here, computational 

simulations are used to solve and validate mathematical models that underlie brain 

dynamics e.g. across the aging process (Naik et al., 2017; Surampudi et al., 2018). 

Computational modelling is particularly valuable for the integration of data across 
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different modalities, e.g. not only linking structural and functional connectivity data, but 

also the system level to the neuron level (Einevoll et al., 2019). Further, brain simulations 

have been found to uncover model parameters that quantify mechanisms underlying an 

emergent behavior, which would not be traceable from direct observations (Breakspear, 

2017). In this regard, relating the 1000BRAINS structural and functional connectomes 

by the use of a computational neuroscience approach could be promising to assess the 

impact of SC on RSFC in a causal sense.  

Lastly, to finish this work with a positive outlook, the concept of the so-called 

cognitive reserve should be addressed: Although nobody can prevent oneself from aging, 

there exist studies indicating that specific lifetime experiences can positively influence 

the maintenance of cognitive functions in older adults (Antonenko & Floel, 2014; 

Marques et al., 2016; Pettigrew & Soldan, 2019; Stern, 2009). For example, second 

language learning was found to delay the onset of symptoms associated with 

neurodegeneration by several years (Bak, 2016). With regards to cognitive reserve, proxy 

variables (such as second language learning) are assumed to beneficially influence the 

efficiency, capacity, or flexibility of brain networks across the lifetime which then, during 

the aging process, allow a better coping of age-related brain changes (Pettigrew & Soldan, 

2019). With the current work indicating RSFC of primary processing networks being so 

highly relevant for cognitive maintenance in older adults, training and preservation of 

primary processing functions may be highly significant and conducive for healthy aging. 

This could be considered for e.g. aging preservation programs or lifestyle consultations. 

Future research is warranted to first, detect behavioral interventions that positively 

stimulate primary processing networks and second, investigate how these potentially 

influence their progression across aging.  

With the results of the current work, relevant neurobiological factors were 

identified that may contribute the highly variable aging process. The inter-relation 

between SC and RSFC and its causal link to behavioral performance is still far from being 

conclusive. With regards to the increasing importance of healthy aging, computational 

neuroscience approaches as well as longitudinal research are highly promising in further 

uncovering the dynamics between SC and RSFC as well as their interrelation with 

behavioral performance. 
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Methodological Considerations 
The present work, including both studies, “is based on a cross-sectional design. In order 

to understand the precise interrelation of RSFC changes, its specific impact on cognitive 

performance [as well as changes of the relation between SC and RSFC], longitudinal 

studies are warranted. However, the current cross-sectional design has the advantage of a 

very large sample size representative and thus largely generalizable for the general older 

population in West Germany.” (Stumme et al., 2020, page 12).  

The implication of predefined functional network parcellations may depict a 

potential limitation of the current work, as these are not based on data from specific older 

adults. In fact, methods to create imaging-based brain parcellations improved over the 

recent years (Eickhoff et al., 2018) and has very recently yielded a whole-brain network 

parcellation also for particularly older adults (Doucet et al., 2021). For the first study, it 

was decided on an established brain parcellation which has frequently been used across 

the adult lifespan (Betzel et al., 2014; Fjell et al., 2015; Fjell, Sneve, Grydeland, Storsve, 

& Walhovd, 2017; Ng et al., 2016) to enable a direct comparison to previous work. In 

accordance to very recent results indicating a parcellation into 400-600 nodes to be 

optimal for functional and structural analyses (Schaefer et al., 2018; Varikuti et al., 2017), 

the granularity of the parcellation from the first to second study was increased to allow 

for the detection of finer-grained regional effects. The majority of studies investigating 

whole-brain connectivity focus on cortical brain regions. However, resting-state networks 

are known to also encompass subcortical structures (Ji et al., 2019). For a complete 

picture of SC-RSFC relations as well as its associations with aging, cognitive 

performance and sex, the inclusion of subcortical structures will be an essential and 

promising factor for future studies. 

Regarding the first study, aim was “to contribute to the ongoing debate whether 

systematic age-related differences at the whole-brain level support the compensation or a 

dedifferentiation theory. Therefore, a robust definition of established brain networks and 

the performance in general cognitive domains was used. Similar to previous large, 

population-based studies (i.e. Miller et al. (2016)), the effect sizes and correlation values 

between RSFC and age or the cognitive components are comparably small. Importantly, 

particularly at older age, it was shown that there is a rather complex interplay between a 

variety of influencing factors explaining the total amount of interindividual variability 

between subjects with each individual factor showing limited effect within such a limited 

age group (Bittner et al., 2019; Caspers et al., 2020; Dekkers et al., 2019; Jannusch et al., 

2017). However, the current results being very much in line with results from Perry et al. 
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(2017) point at an existing association between primary processing networks and 

cognitive performance in particularly older adults, not only on single connection but also 

on network level. Here could be potential for more specific underlying mechanisms, i.e. 

specific node or edge differences, that might be highly relevant in terms of cognitive 

differences at higher age. Further studies are warranted to address specific brain-behavior 

relationships on comprehensive datasets of specifically older adults including very 

specific connectivity measures as well as functions of specific cognitive domains.  

The current work focused on the estimation of strength values, since it is not 

dependent on network sizes and therefore circumvents the critical utilization of 

thresholding (van den Heuvel et al., 2017). Other graph-theory derived measures were 

not included since the interpretation of measures based on path length or clustering are 

crucially dependent on apparent direct connections, which is not necessarily the case in 

RSFC analyses [and are therefore also not applicable for SC - RSFC relations] (Honey et 

al., 2009; Zalesky et al., 2012; Zalesky et al., 2016).” (Stumme et al., 2020, page 12) 

Further it should be noted that negative correlations imply a qualitatively distinct type of 

interaction between brain regions, which is not yet clearly interpretable (Chai et al., 2012; 

Fornito et al., 2013; Murphy & Fox, 2017). “Negative correlations may be artificially 

induced when using global signal regression in functional image preprocessing (Fox et 

al., 2009; Murphy et al., 2009; Murphy & Fox, 2017). Therefore, results on negative 

weights should be interpreted with caution and should be understood as complementary 

information without demanding clear interpretability on its own but rather underpinning 

the findings based on positive connections. The evolution of theoretic measures dealing 

with signed weights will help in solving this problem and expand our understanding of 

functional network dynamics.” (Stumme et al., 2020, page 12).   

SC evolves, rearranges and strengthens in developmental stages, after brain 

injuries as well as across the lifespan as a result of e.g. learning processes (Fields, 2005; 

Salat, 2011; Yeatman et al., 2014). At high age, however, increases in SC are rather 

unlikely and may point at yet unresolved methodological constraints. In addition, 

tractography on diffusion imaging data is not a direct measurement but only an estimation 

of anatomical connectivity (Sotiropoulos & Zalesky, 2019) and known to under-represent 

long-distance white matter connections (de Reus & van den Heuvel, 2013). Across the 

aging process the paucity of long-distance connections even increases which may foster 

increasing short-range connections (Puxeddu et al., 2020; Zhao et al., 2015). This is 

especially important as recent work found the fiber length distribution to systematically 
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vary across the cortex (Bajada et al., 2019). Ground truth for structural connectomes has 

not yet been evolved.  
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Summary 
Results of the current work show that the previously reported trend of decreasing intra- 

and increasing between-network RSFC in studies on young and middle-aged subjects is 

also applicable in particularly older adults. Importantly, while in younger age mainly 

changes of higher-order networks have been reported, the current results on older adults 

indicate RSFC decreases within and between particularly primary processing networks, 

i.e. the VN and SMN. Here, lower RSFC were additionally associated with lower

cognitive performance indicating primary processing networks to be particularly relevant 

for cognitive performance differences. Furthermore, age-related increases of the SMN 

with higher-order networks was found which may hint at a compensational attempt to 

maintain cognitive functions despite the loss of intra-network coherence. However, 

higher between-network RSFC was rather associated with worse cognitive performance 

underpinning the dedifferentiation theory in which a less segregated and specialized 

network system in aging is associated with cognitive decline. In this work, insights into 

a potential interconnectedness of the compensation and dedifferentiation processes are 

provided. Thereby, compensational attempts, i.e. specific and task-adequate co-

activations, may at some point during the aging process be superseded by a 

dedifferentiated, diffuse activation pattern followed by cognitive decline. With regards to 

sex, results of this work emphasize the need for sex-stratified analyses in studies with 

older subjects as sex-specific RSFC differences were found, potentially facilitating sex-

related behavioral functioning. Furthermore, in the second study older adults’ 

chronological age was demonstrated to be predictable by combined whole-brain region-

wise RSFC and SC, though showing a differential importance of brain regions and 

modalities for age prediction. While for RSFC regions of the SMN were found to be age-

characteristic, the frontal lobes SC seems to be particularly indicative for older peoples’ 

chronological age. Additionally, the results point at two differential age progressions: In 

cases where age-related differences in SC only affect the frontal lobe, RSFC of the SMN 

is relatively preserved. In contrast, if age-related decreases in SC pertain to the whole 

brain, the SMN shows overall RSFC decreases potentially hinting at a more accelerated 

aging process. 

In conclusion, the age-related RSFC reorganization in older adults particularly affects the 

SMN. Here, differences are not only related to cognitive performance decline, but also 

dependent on whole-brain SC differences underpinning the necessity to integrate multiple 

modalities for a comprehensive understanding of the cognitive aging in older adults. 
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Supplement 
Supplementary Table 1:      Anatomical information on the functional network parcellation in accordance to Yeo et al. (2011) used within the first study. 
Regions are subdivided into left and right hemisphere according to their respective networks. Each regions‘ macro-anatomical label name (according to Tzourio-Mazoyer et al., 2002) 

as well as its center of gravity (COG) in x, y and z direction are denoted (also see Stumme et al., 2020). 

NETWORK LEFT HEMISPHERE RIGHT HEMISPHERE 
RO

I 
Label COG 

(X) 
COG 
(Y) 

COG 
(Z) 

ROI Label COG 
(X) 

COG 
(Y) 

COG 
(Z) 

VISUAL 1 Lateral occipital Cortex -25.9 -86.8 -2.2 43 Lateral Occipital Cortex 28.4 -82.3 -2.0
2 Intracalcarine Cortex -11.3 -73.5 12.2 44 Intracalcarine Cortex 13 -70.4 11.6

SOMATOMOTOR 3 Precentral Gyrus -22.4 -25.7 62.8 45 Precentral Gyrus 23.1 -24 61.4 
4 Central Opercular Cortex -50.4 -15.4 17.4 46 Central Opercular Cortex 51.9 -12.3 15.3 
5 Superior Temporal Gyrus. posterior 

division 
-56.8 -32.8 5.6 47 Superior Temporal Gyrus. posterior 

division 
55.3 -27.4 1.8 

DORSAL 
ATTENTION 

6 Lateral occipital Cortex. superior 
division 

-33.5 -65.5 22.8 48 Lateral occipital Cortex. superior 
division 

36.4 -62.0 23.3 

7 Precentral Gyrus -26.8 -5.07 55.7 49 Precentral Gyrus 26.7 -4.7 57.8 
8 Superior Parietal Lobule -35.3 -40.5 53 50 Superior Parietal Lobule 31 -40.1 54.7      

51 Precentral Gyrus 54.9 7.6 30.3 
52 Middle Temporal Gyrus 58 -57.9 3.4 

VENTRAL 
ATTENTION 

9 Cingulate Gyrus. anterior division -8.3 -9 48.3 53 Cingulate Gyrus. anterior division 8.45 -6.3 48.7 
10 Insular Cortex -42.5 0.6 2.1 54 Insular Cortex 43.5 2.8 0.6 
11 Supramarginal Cortex. anterior 

division 
-58 -31.4 25.8 55 Supramarginal Cortex. anterior 

division 
60.4 -27.9 25.7 

12 Frontal Pole -31.4 44.3 26.4 56 Precentral Gyrus 51.7 -0.9 47.1 
13 Paracingulate Gyrus -4.8 23.3 33.4 57 Frontal Pole 34.9 45.4 22.4 
14 Insular Cortex -36 19.1 0.2 58 Insular Cortex 40.1 20.8 0.6 
15 Frontal Orbital Cortex -26.5 42 -12.1 59 Paracingulate Gyrus 7.8 20.8 41.8 
16 Supramarginal Gyrus. posterior 

division 
-60.7 -41.4 34.8 60 Supramarginal Gyrus. posterior 

division 
61.2 -38.8 34.9 

LIMBIC 17 Temporal Fusiform Gyrus. anterior 
division 

-35.6 -4.9 -33 61 Temporal Fusiform Gyrus. anterior 
division 

36.4 -3.0 -34

18 Frontal Medial Cortex -12.1 37 -17.6 62 Frontal Medial Cortex 12.4 37.8 -17.9

FRONTO-
PARIETAL 

19 Precuneous Cortex -7.27 -63.5 43.9 63 Precuneous Cortex 8.0 -60.1 42.6 
20 Cingualte Gyrus. poterior division -4.65 -25 27.4 64 Cingualte Gyrus. poterior division 5.1 -25.1 28.3 
21 Angular Gyrus -47.3 -53.6 48.7 65 Frontal pole 31.6 54.6 -1.0
22 Middle Frontal Gyrus -41.1 22.1 39.9 66 Middle Frontal Gyrus 37.9 19 46.5
23 Superior Frontal Gyrus -27.2 13.2 58.3 67 Superior Frontal Gyrus 4.7 33.5 42.9
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Supplementary Table 1: Anatomical information on the functional network parcellation – continued 

24 Frontal Pole -32.7 54.9 -1.8 68 Angular Gyrus 51.3 -52.1 45.5 
25 Middle Temporal Gyrus. poterior 

division 
-59.5 -40.1 -14.2 69 Middle Temporal Gyrus. poterior 

division 
62.5 -30.7 -16.3

26 Superior Frontal Gyrus -2.9 31.5 42.6 70 Middle Frontal Gyrus. anterior 
division 

54.3 -6.1 -21.8

27 Middle Temporal Gyrus. poterior 
division 

-55.6 -13.3 -18.4 71 Frontal Orbital Cortex 46.2 27.3 -6.5

28 Frontal Orbital Cortex -45.4 26.5 -2.2 72 Frontal Pole 10 46.6 41.2 
29 Angular Gyrus -51.6 -55.4 27.9

     

30 Superior Frontal Gyrus -8.9 44.1 40.6
31 Middle Frontal Gyrus -39.9 13.6 49.6

DEFAULT MODE 
32 Middle Frontal Gyrus -43 21.9 23.3 73 Middle Frontal Gyrus 42.4 18.7 28 
33 Supramarginal Gyrus -38.3 -50.8 44.1 74 Angular Gyrus 40.7 -50.6 45.2 
34 Superior Frontal Gyrus -25.6 6.7 57.3 75 Middle Temporal. temporooccipital 

part 
60.2 -47.8 -12.3

35 Inferior Temporal Gyrus -53.1 -52.3 -10.4 76 Parahippocampal Gyrus. posterior 
division 

26.5 -28.3 -19.7

36 Precuneous Cortex -13.1 -57.1 13 77 Precuneous Cortex 13.7 -54.1 13.6 
37 Parahippocampal Gyrus. posterior 

division 
-25.3 -32.5 -17.3 78 Lateral occipital Cortex. superior 

division 
47.8 -70.6 26.4 

38 Lateral occipital Cortex. superior 
division 

-38.5 -78.8 30.9 79 Paracingulate Gyrus 7.5 49.8 5.74 

39 Cingulate Cortex. posterior division -6.0 -50.3 30.9 80 Cingulate Cortex. posterior division 6.3 -50.2 29.9 
40 Paracingulate Gyrus -7.6 50.7 5.53 81 Angular Gyrus 50.7 -57.7 29.2 
41 Superior Frontal Gyrus -22.0 29.9 46.1 82 Superior Frontal Gyrus 22.9 35.2 43.2 
42 Lateral occipital Cortex. superior 

division 
-43.8 -67.8 36.6 83 Middle Frontal Gyrus. anterior 

division 
61 -7.4 -17.6
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Supplementary Table 2:      Network-wise RSFCpos values (+/- SE) for the whole group, only females and only males. 
  VN SMN DAN VAN LN FPN DMN 

 
All 

within  6.25(0.07) 7(0.11) 13.35(0.18) 51.82(0.56) 2.05(0.04) 70.67(0.67) 90.88(0.89) 

inter 16.37(0.24) 32.51(0.35) 45.16(0.41) 75.13(0.71) 19.97(0.23) 111.19(1.07) 81.37(0.82) 

ratio -0.42(0.01) -0.64(0) -0.18(0.01) -0.54(0) -0.81(0) -0.22(0.01) 0.05(0.01) 

 
Female 

within  6.23(0.11) 7.05(0.17) 13.44(0.27) 53.96(0.85) 1.95(0.05) 72.1(1.01) 94.08(1.32) 

inter 15.87(0.36) 31.12(0.51) 44.41(0.58) 73.79(1.06) 19.91(0.36) 110.57(1.58) 80.93(1.17) 

ratio -0.4(0.01) -0.63(0.01) -0.16(0.01) -0.54(0.01) -0.81(0.01) -0.21(0.01) 0.07(0.01) 

 
Male 

within  6.26(0.1) 6.96(0.15) 13.27(0.25) 50.03(0.73) 2.13(0.05) 69.48(0.89) 88.21(1.18) 

inter 16.77(0.31) 33.66(0.47) 45.77(0.58) 76.25(0.97) 20.02(0.3) 111.71(1.46) 81.73(1.15) 

ratio -0.43(0.01) -0.65(0.01) -0.21(0.01) -0.55(0.01) -0.8(0.01) -0.23(0.01) 0.04(0.01) 

 
 
 

All 

VN  5.6(0.17) 7.89(0.19) 4.47(0.14) 1.19(0.05) 5(0.14) 8.57(0.2) 

SMN   12.92(0.23) 21.47(0.32) 3.15(0.07) 9.53(0.26) 12.35(0.26) 

DAN    28.91(0.48) 3.12(0.08) 24.5(0.42) 12.96(0.3) 

VAN     7.69(0.16) 55.96(0.74) 31.76(0.65) 

LN      9.83(0.19) 14.96(0.24) 

FPN       99.85(1.03) 

 
 
 
 

Female 

VN  5.78(0.25) 7.62(0.29) 4.43(0.21) 1.24(0.08) 4.72(0.22) 7.96(0.29) 

SMN   12.32(0.36) 21.06(0.48) 3.14(0.11) 8.58(0.36) 11.37(0.38) 

DAN   1.00 29.11(0.73) 3.08(0.12) 24.42(0.62) 12.28(0.4) 

VAN     7.48(0.26) 55.27(1.14) 30.22(0.96) 

LN      9.71(0.28) 15.17(0.36) 

FPN       101.64(1.57) 

 
 
 
 

Male 

VN  5.45(0.22) 8.12(0.26) 4.51(0.19) 1.16(0.07) 5.24(0.18) 9.08(0.27) 

SMN   13.42(0.3) 21.81(0.44) 3.16(0.1) 10.32(0.36) 13.16(0.36) 

DAN    28.75(0.64) 3.15(0.1) 24.57(0.57) 13.53(0.43) 

VAN     7.86(0.19) 56.53(0.97) 33.04(0.89) 

LN      9.93(0.26) 14.78(0.31) 

FPN       98.35(1.36) 
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Supplementary Table 3:      Network-wise RSFCneg values (+/- SE) for the whole group, only females and only males. 
  VN SMN DAN VAN LN FPN DMN 

 
All 

within  0.02(0) 0.81(0.04) 1.09(0.05) 5.35(0.21) 0.33(0.02) 15.22(0.36) 18.08(0.4) 

inter 32.33(0.37) 41.48(0.44) 56.09(0.5) 96.64(0.83) 22.18(0.24) 105.66(0.78) 132.31(1.11) 

 
Female 

within  0.03(0.01) 0.76(0.06) 0.95(0.07) 4.86(0.31) 0.35(0.03) 14.21(0.54) 16.97(0.53) 

inter 32.64(0.56) 42.03(0.7) 55.78(0.81) 97.82(1.26) 21.89(0.36) 104.62(1.18) 133.69(1.65) 

 
Male 

within  0.02(0.01) 0.85(0.06) 1.21(0.08) 5.77(0.28) 0.32(0.02) 16.05(0.48) 19(0.58) 

inter 32.08(0.48) 41.03(0.56) 56.35(0.62) 95.65(1.09) 22.41(0.31) 106.53(1.05) 131.17(1.5) 

 
 
 
 
 

All 

between        

VN  2.28(0.09) 3.14(0.1) 14.35(0.27) 3.3(0.08) 22.54(0.35) 19.04(0.31) 

SMN   4.64(0.12) 11.57(0.27) 3.32(0.08) 30.96(0.45) 30.19(0.41) 

DAN    15.12(0.35) 5.4(0.11) 33.13(0.48) 50.74(0.58) 

VAN     9.48(0.19) 50.23(0.73) 92.51(1.22) 

LN      12.57(0.21) 10.27(0.19) 

FPN       61.87(0.88) 

 
 
 

Female 

VN  2.21(0.13) 3.2(0.16) 14.23(0.45) 3.28(0.12) 22.93(0.54) 19.43(0.46) 

SMN   4.59(0.19) 11.32(0.42) 3.2(0.12) 31.77(0.71) 30.97(0.63) 

DAN    14.35(0.54) 5.29(0.15) 32.62(0.78) 51.5(0.89) 

VAN     9.6(0.29) 50.16(1.09) 95.98(1.88) 

LN      12.34(0.3) 10.07(0.29) 

FPN       59.42(1.3) 

 
 
 
 

Male 

VN  2.34(0.12) 3.1(0.13) 14.46(0.34) 3.32(0.11) 22.22(0.46) 18.72(0.42) 

SMN   4.68(0.16) 11.78(0.34) 3.42(0.11) 30.3(0.56) 29.54(0.55) 

DAN    15.76(0.45) 5.49(0.15) 33.56(0.61) 50.11(0.78) 

VAN     9.38(0.25) 50.3(0.99) 89.62(1.59) 

LN      12.76(0.29) 10.44(0.25) 

FPN       63.91(1.17) 
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Supplementary Table 4:      Results of the relations between network-wise RSFCpos and education. 
P-values (F-stats) from MANCOVAs with intra-, inter-, the ratio-scores and between-network RSFCpos as dependent variables and education as independent predictors.  

 
 Education 
 VN SMN DAN VAN LN FPN DMN 

Within .123 
(2.39) 

.954 
(0.003) 

.413 
(0.67) 

.823 
(0.05) 

.677 
(0.173) 

.295 
(1.1) 

.122 
(2.398) 

Inter .743 
(0.108) 

.28 
(1.169) 

.36 
(4.435) 

.590 
(0.291) 

.449 
(0.573) 

.505 
(0.445) 

.12 
(6.411) 

Ratio .344 
(0.897) 

.766 
(0.088) 

.599 
(0.277) 

.817 
(0.054) 

.935 
(0.007) 

.747 
(0.105) 

.642 
(0.216) 

Between        
VN 1       

SMN .362 
(0.831) 

1      

DAN .382 
(0.765) 

.626 
(0.238) 

1     

VAN .868 
(0.028) 

.166 
(1.926) 

.162 
(1.961) 

1    

LN .394 
(0.728) 

.119 
(2.431) 

.658 
(0.197) 

.961 
(0.002) 

1   

FPN .129 
(2.306) 

.426 
(0.634) 

.133 
(2.267) 

.744 
(0.107) 

.945 
(0.005) 

1  

DMN .335 
(0.929) 

.937 
(0.006) 

.140 
(2.183) 

.830 
(0.046) 

.551 
(0.355) 

.460 
(4.006) 

1 
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Supplementary Table 5:      Results of all relations between network-wise RSFCneg estimates and age and sex. 
P-values (F-stats) from MANCOVAs with intra-, inter- and between-network RSFCneg as dependent variables and age and sex as independent predictors (covariate: education). 

Significant values (intra-, inter-network RSFCneg < 0.007 and between-network RSFCneg < 0.002 after Bonferroni-correction), that additionally survived post-hoc bootstrap validation, 

are indicated by an asterisk and highlighted in grey. 

 
 Age Sex 
 VN SMN DAN VAN LN FPN DMN VN SMN DAN VAN LN FPN DMN 

Within .004 * 
(8.294) 

.007 * 
(7.38) 

.007 * 
(7.317) 

.019 
(5.516) 

.602 
(0.272) 

.002 * 
(10.074) 

.185 
(1.76) 

.774 
(0.083) 

.198 
(1.662) 

.021 
(5.309) 

.028 
(4.86) 

.599 
(0.276) 

.017 
(5.685) 

.008 
(6.982) 

Inter .525 
(0.404) 

.989 
(0) 

.326 
(0.965) 

.089 
(2.897) 

.068 
(3.33) 

.03 
(4.725) 

.035 
(4.458) 

.327 
(0.961) 

.617 
(0.25) 

.486 
(0.485) 

.606 
(0.266) 

.138 
(2.207) 

.094 
(2.807) 

.534 
(0.387) 

Between               
VN 1 

 
      1       

SMN <.001* 
(22.09) 

1      .521 
(0.412) 

1      

DAN .237 
(1.4) 

.005 
(7.82) 

1     .658 
(0.196) 

.481 
(0.497) 

1     

VAN .201 
(1.64) 

.212 
(1.561) 

.705 
(0.143) 

1    .842 
(0.04) 

.344 
(0.896) 

.076 
(3.153) 

1    

LN .139 
(2.191) 

.005 
(7.966) 

.077 
(3.128) 

.787 
(0.073) 

1   .932 
(0.007) 

.174 
(1.854) 

.268 
(1.227) 

.893 
(0.018) 

1   

FPN .288 
(1.129) 

.369 
(0.808) 

.663 
(0.19) 

.019 
(5.503) 

<.001 * 
(12.839) 

1  .289 
(1.126) 

.321 
(0.986) 

.305 
(1.052) 

.484 
(0.49) 

.192 
(1.705) 

1  

DMN .637 
(0.223) 

.599 
(0.276) 

.288 
(1.131) 

.127 
(2.335) 

.001 * 
(10.18) 

.085 
(2.974) 

1 .181 
(1.792) 

.225 
(1.472) 

.323 
(0.976) 

.064 
(3.451) 

.231 
(1.436) 

.014 
(6.079) 

1 
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Supplementary Figure 1:      Scatterplots of the relation between age and network-wise RSFCneg 
estimates. 

The visualized results (z-scores) all showed a significant age effect and additionally survived post-hoc 

bootstrap validation: intra-network RSFCneg (blue) of the VN, SMN, DAN and FPN, between-network 

RSFCneg (green) between the VN and SMN, the LN and FPN as well as DMN. Age-related increasing 

RSFC indicate higher RSFCneg estimates in higher age.
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Intra-network RSFCneg Inter-network RSFCneg 

Between-network RSFCneg

Supplementary Figure 2:      Network-wise sex-related RSFCneg differences. 

Visualized intra-network RSFCneg, inter-network RSFCneg and between-network RSFCneg differences (z-scores, including error bars) between male (blue dots) and female (pink dots). 

No significant sex-related RSFCneg differences were found (intra-, inter-network RSFCneg < 0.007 and between-network RSFCneg < 0.002 after Bonferroni-correction). 
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Supplementary Figure 3:      Node-wise loading values of component one. 
Intra- (A, C, E) and inter-network (B, D, F) connectivity of SC (A, B), RSFCpos (C, D) and RSFCneg (E, F) 

visualized as bar plots (colored according to their respective network). 
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Supplementary Figure 4:      Node-wise loading values of component two. 
Intra- (A, C, E) and inter-network (B, D, F) connectivity of SC (A, B), RSFCpos (C, D) and RSFCneg (E, F) 

visualized as bar plots (colored according to their respective network). 
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