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Abstract: In this paper, we present an approach for multi-level parallel-in-time (PinT) electromagnetic
transient (EMT) simulation. We evaluate the approach in the context of power electronics system-level
simulation. While PinT approaches to power electronics simulations based on two-level algorithms
have been thoroughly explored in the past, multi-level PinT approaches have not yet been investigated.
We use the multigrid-reduction-in-time (MGRIT) method to parallelize a dedicated EMT simulation
tool which is capable of switching between different converter models as it operates. The presented
approach yields a time-parallel speed-up of up to 10 times compared to the sequential-in-time
implementation. We also show that special care has to be taken to synchronize the time grids with the
electronic components’ switching periods, indicating that further research into the usage of different
models from adequate model hierarchies is necessary.

Keywords: multi-level; parallel-in-time; MGRIT; simulation; power electronics

1. Introduction

In recent years, partly due to the introduction of larger and more complex converter-
level solutions, the execution speed of power electronics simulations has become a con-
cern [1–3].

To allow for the growing size of analyzed systems, while maintaining a high resolution
in the time domain required by switching devices, many simulations employ techniques of
parallel computing [4–9], such as parallelization of calculations of different components [10,11].
Modern power electronics devices are increasingly penetrating power systems, while
requiring even smaller time-steps and, thus, slowing down simulations [12].

Physical systems like these introduce restrictions on the simulation’s time-step and,
thus, slow down computation. Within power electronics simulations, the smallest accept-
able time-step is often determined by switching frequencies of converter devices. Increasing
the complexity of the simulated system results in longer execution times, assuming that
the time-step is already set to the largest meaningful value. This issue is usually addressed
by exploiting parallelism of the model or in the simulation algorithm in some way and,
thus, distributing the computations among multiple computing units. This approach is
supported by the fact that speed-up cannot be expected to originate from semi-conductor
improvements alone, but rather from improving algorithms and hardware architecture
simultaneously [13].

Dynamic simulations, even with a high degree of spatial parallelism, are still in-
herently bounded by the sequential nature of the time-stepping involved. To address
this, even before multicore architectures were the standard, methods for parallelization
of the temporal dimensions have been proposed [14], and subsequently, many new tech-
niques have been explored [15]. Based on the Parareal algorithm [16], published in 2001,
various sophisticated PinT simulation techniques have been developed. In conjunction
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with spectral-deferred-correction (SDC) methods [17], which apply an iterative solver
to a collocation-like problem [18–21], hybrid parareal spectral-deferred-correction (SDC)
methods were presented in [22,23]. Further developments evolved into the parallel full-
approximation scheme in space and time (PFASST) [24]. A somewhat different founda-
tion for parallel-in-time (PinT) methods is provided by multigrid-based methods [25,26].
However, both Parareal and PFASST can be perceived as special cases of the multigrid
approach [25], as discussed in [27,28]. Besides the multigrid-reduction-in-time (MGRIT)
algorithm [29], space-time multigrid methods [30,31] and multigrid wave-form relaxation
methods [32,33] have been developed.

The MGRIT method has been shown to be applicable in high-performance computing
environments, where thousands of computing units are available for simulations [34,35].

At the cost of increasing the overall number of computations, speed-up can be achieved
given a sufficient number of computing units. This serves as the main motivation to adapt
the MGRIT technique developed for the numerical solution of differential equations [29] to
the simulation of electronic circuits usually described by differential algebraic systems of
equations (DAEs).

Recently, the parareal approach was shown to be applicable to electromagnetic tran-
sient (EMT) simulations of power systems [36], DC and AC/DC grids with device-level
switch modelling [37–39] and simulations of electric vehicles [40]. Further implementations
of a two-level approach have been published [41,42], showing the continued interest in
parallelization-in-time for power system simulations.

Multi-level approaches have been successfully applied to power system simulations
with scheduled event detection [43] and to power delivery networks with non-linear
load-models [44].

The multi-level parallel-in-time (PinT) simulation of device-level, switching-model
converters has not yet been demonstrated to the authors’ knowledge. Since it promises
further speed-up if sufficient computing resources are available, while providing similar
levels of accuracy [45], the combination of MGRIT with power electronics simulation and
control will be explored in this publication. We focus on the comparison between sequential,
two-level, and multi-level versions of the same algorithm, analyzing the influence of further
time-parallel levels beyond the first, while exploring the limitations on coarse level time-
step size due to interference with the switching periods of the modelled devices.

Section 2 gives an overview of the MGRIT algorithm. Section 3 describes the imple-
mented algorithm and test cases. The resulting simulation data are presented in Section 4
along with a comparison with time-sequential simulation techniques. We show that the pre-
sented multi-level approach is able to provide a speed-up of between three and four times
compared to two-level versions, and up to 10 times compared to the fully sequential
version. Section 5 concludes the article with some summarizing thoughts, and points to
opportunities for further research.

2. The Parallel-in-Time (PinT) Approach

The well-researched Parareal algorithm [16] forms the basis of parallel-in-time sim-
ulations and can be interpreted as a two-level version of multigrid-reduction-in-time
(MGRIT) [46]. The basic idea of Parareal is an iteration between a less accurate, but quick,
simulation with long time-steps and calculating the exact solution (on the different time
slices in-between) in parallel, which is, in turn, used to update the approximation on the
coarse grid. Using the MGRIT algorithm, an existing time-stepping scheme can be modified
to be executed in a PinT fashion [29,47]. Recursive application of such a two-level approach
leads to multi-level variants of MGRIT [29].

In this chapter, we briefly introduce the PinT-algorithm MGRIT [29,45]. We start with
some definitions and then give an overview of the MGRIT scheme, as presented in [29,46].
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Assume a given initial value problem (IVP) of the form

ẋ(t) = f
(
x(t), t

)
, for t ∈ [t0, t f ],

x(t0) = x0,
(1)

where x is an at least once continuously differentiable, complex, vector-valued function of
time t, x0 is its initial value at time t0, and f describes the first derivative of x at time t in
terms of x(t) and t.

To discretize the simulation interval [t0, t f ], choose a time-step δ = (t f − t0)/k for
some k ∈ N. With this, we define the fine time grid

Θδ = {ti ∈ R | ti = t0 + iδ, for i = 0, . . . , k}.

We now introduce the propagator φ, an operator that approximates x at time t + δ
based on a previous value x(t),

x(t + δ) ≈ φ
(
x(t), t

)
.

Starting with the initial condition x0, and applying the propagator φ iteratively, we
could compute an approximate solution xi ≈ x(ti), for i = 0, . . . , k, of the system of
Equation (1) on the fine time grid Θδ. This approximate solution is given by the sequence

xi+1 = φ(xi, ti), for i = 0, . . . , k− 1. (2)

The above approach describes a standard (sequential) numerical integration method.
For PinT, we now introduce a second coarse time grid Θ∆ with coarse time-step ∆ := cf · δ,
where cf := k/K for some K ∈ N is the coarsening factor between the two grids. Then, we
can express the coarse time-step as ∆ = (t f − t0)/K and the coarse time grid as

Θ∆ = {Tj ∈ R | Tj = t0 + j∆ for j = 0, . . . , K}.

Here, we introduce the notation Tj for denoting points on the coarse time grid. To
distinguish the two grids, Θδ will be called the fine grid. Time points that are only on
the fine grid, ti ∈ Θδ \Θ∆, are called F-points. Points on the coarse grid, ti, Tj ∈ Θ∆ are
called C-points. An illustration of both time grids and the involved notation can be found
in Figure 1.

∆

δ
t0 t8 = t ft4

T0 = t0 T1 = t4 T2 = t f

t1 t2 t3 t5 t6 t7

Figure 1. Visualization of the time interval [t0, t f ] and notation for two different time grids. Step sizes
are δ (fine grid) and ∆ (coarse grid), the coarsening factor is cf = 4. C-points (F-points) are drawn as
long (short) vertical lines which define the time grids Θ∆ (Θδ).

Analogous to the fine propagator φ, we introduce the coarse propagator Ψ. It repre-
sents an integration algorithm that approximates the solutions on the coarse grid, x(t +
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∆) ≈ Ψ(x(t), t). Starting with X0 = x0, we can generate the approximate solution
Xj ≈ x(Tj) on the C-points iteratively:

Xj+1 = Ψ(Xj, Tj), for j = 0, . . . , K.

In principal, parallelism is achieved in the following way: First, the evolution of the initial
condition x0 = X0 over the coarse grid Θ∆ is computed sequentially, yielding approxima-
tions Xj. Then, these Xj serve as initial conditions for the fine-grid propagation on the
F-points in the different time slices, ti ∈ [Tj, Tj+1), which can be computed independently
of one another.

The following paragraph formalizes this general intuition by introducing the MGRIT
algorithm.

Multigrid Reduction in Time

This group of algorithms recursively applies a two-level integration scheme to yield a
multi-level approach and, thus, allows for a higher degree of parallelism compared to purely
parallel-in-space (PinS) approaches [29,46]. For simplicity, we only present the two-level
version here. Higher-level versions are easily derived from this by recursively introducing
additional time grids (although convergence considerations are more complicated in the
multi-level case [48]).

The approximate solution of the initial value problem (IVP) (1) on a given fine time grid
Θδ with propagator φ may be written in a more succinct way. Note that φ, as introduced
above, may be a non-linear and explicitly time-dependent function. For simplicity, we
restrict ourselves here to linear and time-independent propagators φ and Ψ. Thus, we can
rewrite the iterative update given by Equation (2) into one simultaneous linear equation
system:

Ax =


1
−φ 1

. . . . . .
−φ 1




x0
x1
...

xk

 !
=


x0
0
...
0

 =: g (3)

Introducing the coarse time-grid Θ∆ and denoting the cf-times successive application
of φ with φcf, we may rewrite the above equation as

A∆X =


1
−φcf 1

. . . . . .
−φcf 1




X0
X1
...

XK

 !
=


X0
0
...
0

 =: g∆ . (4)

Solving this system yields the solution on the coarse grid as approximated by the fine
propagator. Now, replacing each φcf in A∆ by the coarse-grid propagator Ψ, we gain the
coarse-grid approximation:

BX =


1
−Ψ 1

. . . . . .
−Ψ 1




X0
X1
...

XK

 !
=


X0
0
...
0

 = g∆ . (5)

The classical residual-correction method [49] forms the basis of the multigrid procedure
for linear systems of equations [50]. In the following, we present the residual-correction
method within MGRIT. Let X(l) denote the approximate solution after the l-th iteration,
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with some initial condition X(0) (this may, for example, simply be the initial value x0 at all
C-points). By defining the residual of the l-th iteration R(l) at the C-points,

R(l) := g∆ − A∆X(l), (6)

the coarse grid correction C(l) may be introduced:

C(l) := B−1R(l). (7)

This correction is used to update the states X(l) at the C-points in an iterative manner:

X(l+1) = X(l) + C(l). (8)

Plugging Equations (6) and (7) into (8), the update rule becomes

X(l+1) = X(l) + B−1
(

g∆ − A∆X(l)
)

, (9)

which can be interpreted as a pre-conditioned stationary iteration. The fine-solution term
A∆X(l) can be computed in parallel, using the results from the preceding coarse solve as
initial values.

The (j + 1)-th row of Equation (9), with j = 0, . . . , K − 1, corresponds to a given
C-point and may be written as

X(l+1)
j+1 = ΨX(l+1)

j −ΨX(l)
j + φcfX(l)

j

by multiplying Equation (9) with B from the left. It is easy to see that the fine-grid
approximation is recovered at the C-points if the terms ΨX(l+1)

j and ΨX(l)
j converge towards

each other as l grows.
Algorithm 1 summarizes the procedure for two levels as published in [46]. This two-

level version is equivalent to the Parareal approach [16]; recursive application yields a
multi-level integration scheme [45]. Note that a (potentially significantly) reduced amount
of sequential time-stepping is still needed on the individual levels, at least in between
respective C-points or, on the coarsest level, in the process of computing the residual R(l).
For a maximally possible amount of levels with coarsening factor cf = 2, the highest
number of successive sequential steps is also two.

Algorithm 1 2-level MGRIT algorithm

1: repeat
2: Propagate approximate solution x(l), cf. Equation (3)
3: Compute residual R(l) on coarse grid, cf. Equation (6)
4: Solve coarse grid correction problem, cf. Equation (7)
5: Correct approximate solution X(l + 1) at C-points, cf. Equation (8)
6: until norm of residual R is sufficiently small.
7: Update solution x(l + 1) at F-points, cf. Equation (3)

3. Implementation

In this section, we present the conceptual combination of the resistive companion
(RC) method [51] with the MGRIT algorithm. We use the MGRIT implementation from
the XBraid software package [52]. For simplicity, we implement only a sequential-in-space
version of the RC method, dubbed here resistive companion solver (RCS). This solver
implements some features not commonly found in power electronics simulation software:
Notably, the representation of the system state (including control logic) accommodates the
multi-level nature of the MGRIT approach by allowing for changes of the time-step and
other simulation parameters as it operates. This is enabled, in part, by employing physical
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currents as system variables instead of the current injections resulting from discretizations
of differential equations, which are commonly used in fixed time-step implementations
of electromagnetic transient (EMT)-solvers. This is depicted, e.g., in Equation (4) of [53],
where the current injections are usually calculated in a post-step and used directly for
the calculation of the next time-step. Instead, we use the physical current to calculate the
required current injection based on the currently applicable time-step length. This proof-
of-concept sequential-in-space time-stepping scheme can be replaced with parallelized
versions without needing to change the PinT algorithm.

A flowchart of the two-level version of the MGRIT algorithm used in this article is
given in Figure 2.
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Start

Read config
and netlist

Build initial
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0 ,
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[T1, T2]: ϕcfX(l)

1
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1 − ϕcfX(l)

0

Calculate resid-
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· · ·
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simulation

data
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Figure 2. Execution flow-chart of the implemented PinT version of the resistive-companion type

solver in the 2-level version.
Figure 2. Execution flowchart of the implemented PinT version of the resistive-companion type
solver in the two-level version.

3.1. Special Considerations for the Solver

To keep track of the different parameters, we use a system-state object that contains all
independent parameters of the system which are subject to change during the simulation.
This includes, but is not limited to, nodal voltages, branch currents, control parameters, such
as current and accumulated error, duty cycles, etc. All of these can easily be overwritten at
any time to allow for the injections necessary in the algorithm.
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Furthermore, special care has to be taken of the controller’s duty cycle. Resolving
this duty cycle with an appropriate time-step is necessary to accurately reproduce the
controller’s behavior in electromagnetic transient situations. Thus, the coarse step should
not be too large.

Note that the combination of methods described here does not lead to a gain in com-
putation speed compared to the sequential implementation for all possible combinations
of parameters. The actual speed-up is highly dependent on multiple factors, such as the
coarsening factor, number of levels, and the test case itself, as will be shown in Section 4
below. This article aims to provide a proof of concept for simulating power electronics in a
multi-level PinT fashion. It exhibits speed-ups of up to 10 times compared to sequential
simulation. Theoretically, the potential speed-up is mainly bounded by the number of
available processors in the most simple cases.

The resistive companion solver (RCS) developed for this article is implemented in C++
and uses the C++ interface provided by the XBraid software [52]. In order to enable a PinT
execution of the sequential RCS utilizing the XBraid package, only a few additional wrap-
ping routines and data structures have to be provided. This allows for direct comparison of
the unchanged sequential program and the corresponding MGRIT counterpart. For each
MGRIT level, distinct discretization schemes may be used, resulting in a level-dependent
propagator φ(l). Similarly, different techniques for the matrix decomposition may be in-
voked on different levels. At the time of writing, three different LU decomposition methods
from the Eigen3 library [54] are available; the implementation of further factorization
techniques, e.g., iterative solvers, is possible.

As is usual for a resistive companion (RC) approach, the modular implementa-
tion allows for dynamically reading in netlist and simulation parameters at runtime.
Among the additional parameters needed for PinT execution are the number of differ-
ent levels, the coarsening factors between the levels, and additional options, such as a
halting tolerance for the residual between solutions on different levels.

The setup of the system matrix is performed analogously to classical EMT-type ap-
proaches and will not be shown explicitly here. We refer the interested reader to [51] for
more details. Note that the use of an implicit method, such as implicit Euler or the implicit
midpoint-rule, is recommended, since MGRIT is known to perform better with L-stable
methods [55].

3.2. Modeling of Converters

For the converters, both a traditional switching model and an averaged model were
implemented. For the latter, each converter is replaced by a number of voltage sources,
current sources, and resistors. The parameters of these substitute elements are updated in
every time-step to reflect the behavior of the emulated component.

For simplicity, a single proportional-integral (PI) controller is used to control either
the output voltage or the output current of the converter. Depending on the switching
frequency fsw, the duty cycle is recalculated in periods given by Tsw = 1/ fsw. The control
signal is given by d(t) = kintε(t) + kprop

∫ t
t0

ε(τ)dτ. The cumulative error given by the
integral is dependent on the history of the system and, thus, needs to be updated properly
respecting the used time-step and previously accumulated error. For a given time-step δt,
the integral component is approximated by εacc(t) =

∫ t
t0

ε(τ)dτ ≈ εacc(t− δt) + 1
2 [ε(t−

δt) + ε(t)].

4. Evaluation

In this section, we present a number of test cases and analyze the performance of our
PinT solver in comparison with sequential time-stepping. The smaller cases also function
as building blocks for a scalable DC-microgrid test case.

All calculations were executed on a machine with two AMD EPYC 7H12 CPUs with
2.60–3.30 GHz clock speed and 64 cores each. For the parallel calculations, if not otherwise
indicated, 128 processing units were used independent of the number of coarse intervals.
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This was due to the overall execution time being lowest with the maximum available
processors.

The halting criterion used is a relative tolerance of 1 × 10−4 on the normalized
residuum ||R(l)||. All given timings are average values from 10 different executions.
Standard deviations of all values are below 0.8 % of the given value.

4.1. Pi-Model Line

As a first example, we consider a simple pi-model line, as illustrated in Figure 3.
Adding a voltage source supplying a voltage VS (with internal resistance RV) on the
terminals of capacitor C1 and a resistive load RL on those of C2, we obtain a first simple
test case. The simulation results in comparison with sequential time-stepping for different
simulation lengths tf, coarsening factors cf, and number of levels Nlvl are summarized
in Table 1. The time-step on the finest level was chosen as δ = 1× 10−2 s, which was
also used for the sequential simulation. Since our model here is equivalent to a system of
well-behaved ordinary differential equations (ODEs), the results confirm that, as expected,
the MGRIT algorithm converges for all combinations of meta-parameters. While higher
numbers of levels and higher coarsening factors lead to an increase in the required number
of iterations until convergence, the speed-up seems to be more or less independent as single
iterations are faster. For the most effective combination of parameters, a speed-up of about
one order of magnitude can be observed.

Rπ Lπ

CA C1

Vin,A Vout,1

Figure 3. Schematic of the pi-line. For testing the components individually in a simple test case,
voltage source and resistive load were added at the respective terminals.

Table 1. Runtime of multi-level PinT compared to two-level and sequential time-stepping for the
pi-line test case.

Simulated timespan t f [s] 1 10 100

Sequential runtime [s] 0.010 55 0.081 73 0.7922

Parallel runtime and number of iterations
[% of sequential time/% of 2-lvl time/#iter]

Nlvl = 2
cf = 2 73.82/-/3 50.24/-/3 42.94/-/3
cf = 4 50.38/-/3 30.95/-/3 22.66/-/3
cf = 10 50.58/-/4 20.43/-/4 12.95/-/4

Nlvl = 3
cf = 2 50.89/68.94/3 30.30/60.31/3 23.59/54.94/3
cf = 4 47.65/94.58/4 16.62/53.70/4 11.70/51.63/4
cf = 10 52.21/103.2/4 13.58/66.47/5 11.63/89.81/9

Nlvl = 4
cf = 2 55.76/75.54/5 25.60/50.96/4 18.14/42.24/4
cf = 4 — 13.25/42.81/5 12.16/53.66/6
cf = 10 — — 9.567/73.88/8

4.2. Converter

As a second test case, we considered a single leg of a power converter as indicated
in Figure 4. We used the latency-based linear multistep compound (LB-LMC) modelling
approach [10] to ensure that our results were compatible with parallel-in-space (PinS)
execution of individual time steps.
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Vin,A

Vin,B

CA

CB

S1

L1,G1 Vout,1

C1

Figure 4. Schematic of the converter with output LC-filter. For testing the components individually
in a simple test case, voltage source and resistive load were added at the respective terminals.

The simulation results in comparison with sequential time-stepping for different
simulation lengths tf, coarsening factors cf, and number of levels Nlvl are summarized in
Table 2. For the converter, we used a time-step of δ = 1× 10−6 s and a switching frequency
of fsw = 20 kHz. Again, we see a higher number of iterations for higher coarsening factors
and numbers of levels, by which the overall reduction in runtime seems unaffected. The
speed-up for the best combination of parameters is about one order of magnitude, as before.

Table 2. Runtime of multi-level PinT compared to two-level and sequential time-stepping for the
converter test case. Deterioration in convergence occurs for cases in which the coarsest time-step and
switching period of the converter are not well-aligned.

Simulated timespan t f [s] 0.1 1 10

Sequential runtime [s] 3.909 39.27 394.3

Parallel runtime and number of iterations
[% of sequential time/% of 2-lvl time/#iter]

Nlvl = 2
cf = 2 136.0/-/3 133.8/-/3 133.8/-/3
cf = 5 76.26/-/3 74.00/-/3 73.89/-/3
cf = 10 41.83/-/4 38.82/-/4 38.70/-/4

Nlvl = 3
cf = 2 NC NC NC
cf = 5 24.21/31.75/6 19.86/26.84/6 19.67/26.62/6
cf = 10 NC NC NC

Nlvl = 4
cf = 2 NC NC NC
cf = 5 NC NC NC
cf = 10 NC NC NC

Due to the switching behavior of the converter, we expect impaired convergence for
cases where the maximum time-step is greater than the switching period of the converter
or does not align with it. Considering, for example, the case of Nlvl = 4 and cf = 2,
the coarsest time-step would be ∆t = 23 · δt = 8µs. The switching period of Tsw = 50µs is
not an integer multiple of this time-step, and, thus, the coarsest steps do not align with the
switching events. For all combinations of parameters in which the switching period is not
an integer multiple of the coarsest time-step, we see that the approximation on the coarse
grid is not able to appropriately capture the development of the duty cycle and cumulative
error, leading to non-convergence.
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4.3. Microgrid

As a final and more comprehensive test case, we consider a residential microgrid.
The schematic of the microgrid can be found in Figure 5. The microgrid is structured
around a DC bus where household, storage and generation units are interfaced by means
of DC/DC converters. The number of household-type elements is not fixed and can be
used to scale the computational burden of the test case (cf. Section 4.5). As an example,
the electrical current for 16 households, ramping up their consumption over one second,
with randomly selected initial times, is shown in Figure 6.

Figure 5. Schematic of the microgrid. Converters are marked by the label “DC/DC”, while the labels
“Grid”, "Battery”, and “Household” represent simple models of the given elements. Black boxes
represent a pi-model line, as described in Section 4.1.

(a)

Figure 6. Cont.
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(b)

Figure 6. Simulation results of a 16-household microgrid with ramps in each household for (a) PinT
and (b) sequential execution. The simulation was performed with a cold-start (all voltages and
currents equal to zero). The initial transient of the main bus voltage is shown in the lower left plots,
respectively. The development of the current over the whole simulation interval is shown in the
respective upper left plots (note the shift of the abscissa by the target voltage, 1000 V). The main
bus voltage stays well within an error interval of (1000± 0.1)V. The currents in the households are
summarized in the right-hand side plots. Each household ramps up its power consumption from zero
to 8.450 kW over one second, with randomly chosen switch-on times. (a) Results of PinT simulation.
Some minor artifacts resulting from iterating only until the chosen error tolerance was reached are
visible. (b) Results of sequential simulation for comparison.

The simulation results in comparison with sequential time-stepping for different
simulation lengths tf, coarsening factors cf, and number of levels Nlvl are summarized in
Table 3. As for the single converter, we used a time-step δ = 1× 10−6 s and a switching
frequency fsw = 20 kHz. Non-convergence of the residuals is marked with “NC” for
the applicable parameter combinations. As with the converter model, the reason for this
non-convergence is that, due to the internal switching cycle of the proportional-integral
(PI)-controlled converter, some combinations of coarsening factors cf and number of coarse
intervals Nlvl lead to control events that fall between coarse time-grid points and, thus,
cannot be calculated correctly on the coarse grids. As in the previous cases, an increase
in the required number of iterations for certain parameter combinations does not lead to
less speed-up.

To test the multi-level capabilities of our approach, a second series of measurements
with a much smaller time-step of δt = 2.0× 10−7 s and δt = 2.5× 10−9 s was performed.
While this is not a step size that would usually be used, the results summarized in Table 4
show that higher amounts of coarse levels are not only possible with the right combination
of parameters but even lead to better speed-ups. Nevertheless, the problem remains that
the coarsest levels have to coincide with the switching intervals. The use of an averaged
model of the controlled converter might resolve the issue but this is not within the scope of
this article.
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Table 3. Runtime of multi-level PinT compared to two-level and sequential time-stepping for the
microgrid test case with four household-type elements. The results summarized here display the
expected behavior of no convergence whenever the coarsest time-step does not align with the
switching period. On the other hand, when alignment is given, the algorithm converges and, for
higher coarsening factors and amounts of levels, speeds up the simulation somewhat.

Simulated timespan t f [s] 0.1 1 10

Sequential runtime [s] 10.10 100.4 1000

Parallel runtime and number of iterations
[% of sequential time/% of 2-lvl time/#iter]

Nlvl = 2
cf = 2 184.2/-/4 184.7/-/4 186.0/-/4
cf = 5 95.93/-/6 95.99/-/6 96.74/-/6
cf = 10 61.59/-/20 60.83/-/20 61.32/-/20

Nlvl = 3
cf = 2 NC NC NC
cf = 5 32.84/34.23/8 36.69/38.22/8 36.97/38.22/8
cf = 10 NC NC NC

Nlvl = 4
cf = 2 NC NC NC
cf = 5 NC NC NC
cf = 10 NC NC NC

Table 4. Runtimes for sufficiently small time-step to allow convergence in the microgrid test case.
Time-steps of this size would usually not be used in applications, but the results prove that better
speed-ups are possible if the alignment of coarse step size and switching period is respected.

Timestep δt [s] Sim. time t f [s] Seq. runtime [s]
Par. runtime [% seq. time/#iter]

Nlvl = 4
cf = 2 cf = 5 cf = 10

2.0 × 10−7 0.1 51.63 NC 15.04/33 NC
2.5 × 10−9 0.1 4109 25.45/3 13.49/4 13.05/7

4.4. Multi-Level Scaling Advantage

The scaling potential of the multi-level approach becomes apparent when reducing
the amount of coarse steps to correspond to the number of processing units available, such
that the available two-level parallelism is exhausted. When using a two-level approach,
the number of processing units that can reasonably be used corresponds to the number
of time slices whose fine solution can theoretically be computed in parallel. This means
that the number of C-points should correspond to the number of processing units for the
optimal two-level speed-up.

A multi-level approach, on the other hand, can enable much more parallelism to
exploit any further processing capabilities.

To illustrate this, we solve the microgrid test case with a two-level and a five-level
algorithm for simulation durations corresponding to 64, 96, 128, and 256 coarsest time-steps,
respectively. In both the two-level and the five-level version, the coarsest step size is chosen
to correspond to ∆ = 12.5µs, while the finest time-step was set to δ = 0.78125µs. The
two-level version employs a coarsening factor cf2 = 16 to reach ∆ on the coarse level, while
the five-level version’s uniform coarsening factor was chosen as cfmulti = 2, resulting in
each level’s step length being twice that of the previous level, and ultimately reaching ∆
on the coarsest level. As mentioned above, we expected the speed-up of the two-level
version to plateau when the number of processes reached the number of coarse levels.
Figure 7a,b demonstrate that this expected behavior does indeed occur, showcasing the
increased amount of parallelism that multi-level approaches can offer.
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(a) (b)

Figure 7. Multi-level allows for higher rates of parallelism, resulting in more speed-up in case the
available resources are already exhausted by a two-level PinT algorithm. The plots illustrate this
comparing speed-ups between the two-level and five-level versions of the MGRIT algorithm for
64, 96, 128, and 256 time-steps on the coarsest level. In all cases, a microgrid with four household-
type elements was simulated with a coarsest time-step of ∆t = 12.5µs and a fine time-step of
δt = 0.78125µs. For the five-level version, three intermediate coarsening levels with uniform
coarsening factor cf = 2 were added, resulting in time-steps of ∆tlvl = δt · cflvl. (a) Absolute
runtime per coarse step. For all cases, the multi-level version scales better with increasing number
of processors. (b) Illustration of speed-up only resulting from adding processors. Relative runtime
compared to that of the first datapoint.

4.5. Scalability of the Test Case

Testing the scalability (in space) of our approach, we added varying amounts of
household-type elements to the microgrid studied in Section 4.3, connected via pi-model
lines, as shown in Figure 5. As meta-parameters, we used Nlvl = 3 differently spaced time
grids with a coarsening factor of cf = 5. The results can be found in Table 5.

Table 5. Microgrid: Runtime Comparison Between PinT and Sequential Timestepping for Different
Grid Sizes.

Households
Runtime

seq. [s] PinT [% seq.]

4 29.71 33.24
8 57.23 32.86

16 148.8 33.72
32 545.0 34.63
64 2798 35.31

The percentage speed-up compared to sequential execution remains stable even for
much larger grids.

While this indicates the workability of our approach, the execution time itself remains
dependent on the grid-size. Different components are still solved sequentially per time-
step, leading to increased execution times on a component level and, thus, higher overall
execution times. To tackle this, parallelization techniques in space, such as the latency-based
linear multistep compound (LB-LMC) approach, are needed. The simultaneous application
of both a PinS and a multi-level PinT method will be analyzed in a future publication.

5. Conclusions

Multi-level approaches provide further opportunities for parallelization when the
per-step parallelity is already fully exhausted. Application to simulations of converters
that are modelled on the switch-level may enable faster-than-real-time simulations of
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power systems at a level of accuracy that, until now, has only been reached by slower
simulation approaches.

In this paper, we have presented a multi-level PinT approach for simulating power
electronics devices in DC microgrids. The approach has been shown to provide further
parallelization opportunities and, thus, better scaling with processor number than simple
two-level approaches, while already reaching speed-ups of up to four times compared to
the two-level version when executed with a relatively small number of processing units
(cf. Table 2). With the right meta-parameters, which depend upon the simulated case, we
were able to reduce the PinT simulation time to between 33 % and 10 % of the sequential
simulation time, as shown in Tables 1 and 3. Overall, a higher coarsening factor and
increased number of levels seem to lead to a higher number of required iterations until the
algorithm converges, but, due to faster iterations, an improved speed-up is still possible,
as shown, for example, in Table 3.

While a good choice of the meta-parameters can increase performance, a poor choice
can also lead to severe deterioration of performance. These cases seem to occur especially
when the internal switching cycle and the coarser time-steps are not synchronized, both for
small and large numbers of switch-level modelled power-converter devices. The use of
averaged models for the coarse propagators may help mitigate these effects and improve
convergence. Applicable model hierarchies that enable larger course-level time-steps are,
thus, an interesting avenue for future research.

Of course, a pure PinT approach cannot speed up the individual time-steps. In general,
PinT approaches are most effectively used together with highly optimized parallel-in-space
(PinS) approaches, when the latters’ potential speed-up is already exhausted and further
computing resources are available. The scaling study in Section 4.5 showcases that the
speed-up via multi-level PinT is relatively independent of the system size, which suggests
that any speed-up gained via single-step-based parallel methods will not diminish the
additional potential for PinT speed-up. Thus, a combination with the latency-based linear
multistep compound (LB-LMC) method of achieving high spatial parallelism represents a
promising candidate for future research.
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