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a b s t r a c t 

Least squares estimation of unknown parameters from measurement data is a well-established standard 

method in chromatography modeling but can suffer from critical disadvantages. The description of real- 

world systems is generally prone to unaccounted mechanisms, such as dispersion in external holdup vol- 

umes, and systematic measurement errors, such as caused by pump delays. In this scenario, matching 

the shape between simulated and measured chromatograms has been found to be more important than 

the exact peak positions. We have therefore developed a new score system that separately accounts for 

the shape, position and height of individual peaks. A genetic algorithm is used for optimizing these 

multiple objectives. Even for non-conflicting objectives, this approach shows superior convergence in 

comparison to single-objective gradient search, while conflicting objectives indicate incomplete models 

or inconsistent data. In the latter case, Pareto optima provide important information for understanding 

the system and improving experiments. The proposed method is demonstrated with synthetic and ex- 

perimental case studies of increasing complexity. All software is freely available as open source code 

( https://github.com/modsim/CADET-Match ). 

© 2021 The Author(s). Published by Elsevier B.V. 
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. Introduction 

Chromatography models can aid the rational design and robust 

peration of separation processes. However, before a model can be 

sed it must first be calibrated and validated. Some of the param- 

ters involved in chromatography models are not directly measur- 

ble, and empirical correlations exist for some but not all of them. 

his naturally leads to a procedure where the parameters are esti- 

ated based on chromatogram data. In this paper parameter es- 

imation is broken up into goals and search strategies. Different 

ombinations of proposed goals and search strategies are intro- 

uced and tested on synthetic and industrial data sets. For indus- 

rial application, the entire estimation procedure must be mostly 

utomated and robust, which is the major focus of this contri- 

ution. We introduce a procedure that is designed to get good- 

nough answers in reasonable time while dealing with systematic 

rrors and random noise in the data. The presented procedure is 
∗ Corresponding author. 
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eneral purpose so that it can solve a wide range of problems and 

s flexible enough to adapt to future needs. It is implemented in 

he open source software CADET-Match that is freely available on 

itHub ( https://github.com/modsim/CADET-Match ). 

The goal of the parameter estimation procedure can be com- 

osed of one or more metrics, i.e. specific features that quantify 

ow good or bad a simulated chromatogram matches the corre- 

ponding experimental data. Note that the terms goal, metric and 

bjective are used with distinct meaning that will be formally de- 

ned in the respective sections of this paper. Each metric math- 

matically formalizes the goodness of an objective. Typical met- 

ics are based on the sum of squared differences between sim- 

lation and measurement data or the shape similarity between 

hese curves independent of a time offset. Optimization problems 

re usually formulated such as to minimize the metrics. Hence, a 

uitable metric must have a low value when the objective is good, 

 high value when the objective is bad, and provide a path from 

ad to good where increasingly better objectives are indicated by 

onotonically decreasing values of the metric. These statements 

ight seem simple but can be problematic in practice, as will be 
 under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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llustrated in Section 7 . Ideally the path between high and low 

etric values is smooth. Some metrics are easier to compute gra- 

ients for and this can influence the choice of an adequate search 

trategy. 

Search strategies are all about tradeoffs. From the no free lunch 

heorem [1] “any algorithm, any elevated performance over one 

lass of problems is offset by performance over another class.” This 

eans that there is no general-purpose best search strategy for all 

inds of problems and a proper choice depends on the nature of 

he goal as well as the starting points. Search strategies that are 

ased on gradient descent can be very efficient for some problems 

ut poorly suited for others. Search strategies that are based on 

volution do generally work on a wider class of problems but con- 

erge typically much slower than more specialized strategies such 

s gradient descent. Evolutionary search strategies are black-box 

lgorithms that have very few requirements to function compared 

o other search strategies. They are often a good first choice when 

ittle is known about the goal before more efficient strategies are 

pplied. This paper focuses on gradient descent and evolutionary 

lgorithms. 

. Literature review 

Parameter estimation is not an end to itself. A calibrated model 

nly matters to the extent it can add value to its defined purpose. 

nce a model has been calibrated it can be used to design an op- 

imal separation process [ 2 , 3 ]. A model can also be used to see the

radeoffs between productivity and yield to design processes op- 

imized for previously defined goals [4] . Additionally, models can 

e used to understand the underlying physics and the impact of 

ffects, such as surface diffusion [5] . 

Early methods for calibrating models used algebraic approxima- 

ions and frontal experiments in 1983 for the mass transfer and 

inding [ 6 , 7 ]. As more complex binding models like steric mass- 

ction (SMA) [8] where published the calibration approaches be- 

ame more complex and a combination of breakthrough and pulse 

xperiments were integrated into the calibration process [9] . Early 

ethods still tended to assume systems are always in equilib- 

ium for computational reasons but did start to integrate non-pore 

enetrating pulses and pore-penetrating but non-binding pulses to 

nd the interstitial and particle porosities [10] . However, due to 

he coarse nature of the models used, rate models were mostly in- 

ensitive to diffusion parameters, which can be explained by high 

umerical diffusion. 

The next stage of calibrating models used rate-based models 

ith decreased numerical diffusion more frequently and mostly 

anual fitting with some computer assistance. Early rate-based 

odels for the mass transfer were implemented with equilibrium 

inding models and while most parameters where still manually 

alculated some numerical fitting started to be used [11] . As sys- 

ems became more complicated the fitting process started to be- 

ome more complex with it, such as handling multi-component 

ompetitive binding using Lagrange multipliers [12] . Other meth- 

ds continued to try to efficiently solve problems given the com- 

uter resources of the time, such as using the perturbation method 

13] . 

As computing power further increased fewer assumptions had 

o be made and it was possible to fit multiple experiments simul- 

aneously with overlapping components [14] . This marked a ma- 

or change because it showed that directly fitting to experimental 

ata gave superior results to previous methods using breakthrough 

urves. Direct fitting allowed removing assumptions, for example 

hat the binding capacity for each component was the same. It be- 

ame more common to use a combination of breakthrough and 

ulse experiments with rate-based binding and transport models 

 3 , 15 ]. While it appears methods get more effective and efficient in
2 
erms of fitting models to data, the fact remains that they require 

ood starting points for the gradient descent algorithms used in 

he fitting and the models are still quite coarsely discretized due 

o limited computing resources available. 

As more computing power became available it drove the de- 

elopment of other methods to find suitable model parameters. A 

ata-based approach using a support vector machine (SVM) and 

uantitative-structure-property-relationship (QSPR) is used to pre- 

ict binding properties [16] . Other methods use batch experiments 

o directly measure film diffusion and binding parameters instead 

f having to rely on parameter estimation [17] . 

Computing power continued to rapidly advance to the point 

hat finer grained models can be used for single column systems. 

ne of the drawbacks of gradient descent is that accurate gradi- 

nts are needed which can be computationally expensive to ap- 

roximate or the entire model needs to have analytical derivatives. 

n iterative approach was used with finite difference using com- 

lex numbers. This approach requires modifying a model such that 

omplex numbers can be used [18] . As solvers get more accurate 

nd computers get more efficient, fitting diffusion parameters is 

sed to better understand diffusion inside beads with fitted pore 

iffusion in the range we measure today [19] . Even as solvers get 

ore accurate for single column systems, for multi-column sys- 

ems with multiple components older methods of model calibra- 

ion using algebraic assumptions again are used [20] . 

With increasing compute power, activities in development of 

he parameter estimation methods increased. While inverse fitting 

s difficult and gets more complex as model complexity increases, 

he results are superior to older methods that use empirical cor- 

elations and are also shown to be insensitive to UV noise but 

xtremely sensitive to time offsets [21] . Often sum of squared er- 

ors are used as an estimation objective. The drawback of sum of 

quared errors is that it is extremely sensitive to time offsets of 

eaks and not as sensitive to the shape of the chromatograms. One 

ay to deal with this is to use a weighted sum of mean, stan- 

ard deviation, and skewness of the chromatograms which pro- 

ides more sensitivity to the overall shape and more tolerance of 

on-overlapping starting points and is an important stepping point 

owards the methods presented in this paper [22] . 

Variable transforms for parameter estimation are missing from 

arlier papers. Parameters of different scales slow optimizer perfor- 

ance. A major step forward was combining variable transforms, 

tting simultaneous experiments using a combination of break- 

hrough and pulses, modeling the external column effects using 

 combination of PFR and CSTR, and using gradient descent [23] . 

owever, even with all these advances fitting of many models re- 

ains difficult [ 24 , 25 ]. 

Finally, we move towards more advanced and robust but com- 

utationally expensive methods. With more computing power 

vailable using a global optimization algorithm like a genetic al- 

orithm and using gradients for local refinement further improves 

arameter estimation by removing the need to have a good initial 

tarting point [ 26 , 27 ]. An alternative way to solve parameter esti- 

ation problems that is still in its infancy is using neural networks 

28] . The basic idea is to use a model to sample the space and then

rain a neural network using the model output chromatogram as 

he input and the output of the network as the parameters. An un- 

nown chromatogram based on the same model can then be pro- 

ided as input for the neural network and the parameters directly 

btained as output without any estimation. Depending on the data 

sed to train the network and the quality of the network this ap- 

roach has the potential to dramatically shorten estimation times 

r provide good starting points for refinement. 

A common thread that weaves through all the history here is 

hat creating calibrated models is complex but necessary. Many 

f the parameters are correlated and not intuitively disentangled 
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rom each other and from extra column effects and necessitated 

ot only multiple experiments but also a stagewise estimation pro- 

ess [29] . This is what sets the stage for a robust and automated 

arameter estimation process. 

. Chromatography modelling 

This paper addresses packed bed liquid chromatography at 

reparative scale. Such systems can be described in-silico by com- 

ining different models of the governing transport and binding 

rocesses. The general rate model (GRM), Eqs. (1) , (2) , with suit- 

ble boundary conditions, Eqs. (3) –(6) , and non-equilibrium SMA 

inding, Eqs. (7) –(10) , is a common choice. The GRM describes 

onvection and dispersion in the interstitial column volume, dif- 

usion in the porous particles, and binding to the inner surfaces of 

hese particles. 

∂c b 
i 

∂t 
= −u c 

∂c b 
i 

∂z 
+ D c 

∂ 2 c b 
i 

∂z 2 
− 1 − ε c 

ε c 

3 

r p 
k f 

(
c b i − c p 

i ( r = r p ) 
)

(1) 

∂c p 
i 

∂t 
= D p 

(
∂ 2 c p 

i 

∂ r 2 
+ 

2 
r 

∂c p 
i 

∂r 

)
− 1 −ε p 

ε p 

∂c s 
i 

∂t 
(2) 

 c 

∂c b 
i 

∂z 
( z = 0 ) = u c 

(
c b i ( z = 0 ) − c in i 

)
(3) 

∂c b 
i 

∂z 
( z = L c ) = 0 (4) 

∂c p 
i 

∂r 
( r = r p ) = 

1 

ε p D p 
k f 

(
c b i − c p 

i ( r = r p ) 
)

(5) 

∂c p 
i 

∂r ( r = 0 ) = 0 

(6) 

dc s 
i 

dt 
= 

˜ k a,i c 
p 
i 

(
c̄ s 0 
c s 

r,i 

)νi 

− ˜ k d,i c 
s 
i 

(
c p 

0 

c p 
r,i 

)νi 

(7) 

k a,i = 

˜ k a,i 

(
c s 

r,i 

)−νi (8) 

k d,i = 

˜ k d,i 

(
c p 

r,i 

)−νi (9) 

c̄ s 0 = � −
N c ∑ 

i =1 

( νi + σi ) c 
s 
i 

(10) 

The concentrations c κ
i 

with κ ∈ { b, p, s } refer to the inter-

titial column or bulk liquid ( b), particle pores ( p) and station- 

ry phase ( s ) of the system. Chromatography models depend on 

any parameters, several of which need to be estimated by fit- 

ing simulated chromatograms to experimental data. In Eqs. (1) –(6) 

he column porosity, ε c , particle porosity, ε p , axial dispersion, D c , 

lm diffusion, k f , pore diffusion, D p , adsorption rate, k a,i , desorp- 

ion rate, k d,i , shielding coefficient, σi and characteristic charge, νi , 

f component i = 1 , . . . , N c are typically estimated from measured 

hromatograms. Film and pore diffusion can generally differ be- 

ween components but are assumed to be identical for the specific 

olecules used in this study. Other parameters such as the col- 

mn length, L c , particle radius, r p , interstitial velocity, u c , and ionic 

apacity, �, can be controlled or measured in advance of the sim- 

lation. The same is true for the initial concentrations, c κ
i 
( t = 0 ) , 

nd inlet concentration profiles, c in 
i 

. 

The SMA model, as originally introduced by Brooks and Cramer 

8] , becomes numerically unstable for molecules with high charac- 

eristic charge, ν , such as monoclonal antibodies on high capacity 

esins. This critically important problem is effectively avoided by 
3 
caling the rate constants by the νth power of reference concen- 

rations c 
p 
r and c s r [30] . Recommended values are the highest salt 

oncentration in the feed during elution for c 
p 
r , and the ionic bind- 

ng capacity of the resin for c s r . This ensures both terms raised 

o the νth power in Eq. (7) range between 0 and 1, while without 

caling they can become extremely large and consequently cause 

ccuracy loss and instability of the numerical solver. Moreover, the 

nits of the scaled rate constants are independent of the charac- 

eristic charge, which is beneficial for the physical interpretation of 

hese values and for the performance of search algorithms during 

arameter estimation. 

The tubing is modeled using a dispersive plug flow reactor 

DPFR), Eq. (11) . The tubing model is solved with the same inlet 

nd outlet boundary conditions, as the column model, Eqs. (3) and 

4) , with the tubing length, L t , in place of the column length, L c . 

∂c t 
i 

∂t 
= −u t 

∂c t 
i 

∂z 
+ D t 

∂ 2 c t 
i 

∂ z 2 
(11) 

In the tubing, c t 
i 

denotes concentration, u t velocity and D t ax- 

al dispersion. A continuously stirred tank reactor (CSTR) is used to 

odel mixers and mixing effects. In addition to the model equa- 

ions presented here, CADET-Match works with any combination of 

ransport and binding models that is covered by the CADET solver, 

hich is an independent and continuously extended open-source 

roject ( https://github.com/modsim/CADET ). 

. Parameter estimation 

Many parameters in chromatography models are highly corre- 

ated in the sense that small changes in different parameters im- 

act on the simulated chromatogram in similar ways. This could 

echnically be neglected when accurate model predictions are re- 

uired only for the exact same column dimensions and operating 

onditions that were used for parameter estimation. However, this 

s not the case when the calibrated model is to be applied for guid- 

ng rational process design and scale-up. 

In these applications it is crucially important that the estimated 

arameter values correctly represent and accurately quantify the 

mpact of the respective underlying physical mechanism described 

y the model. Parameter correlations can be avoided by a staged 

stimation procedure that isolates these parameters using specific 

xperiments whose design and order depends on the mathemati- 

al structure of the model equations [11] . Typically, four types of 

xperiments are required with 1) detached column to determine 

he band broadening effect of extra-column volumes, 2) a non- 

inding tracer that does not penetrate the particle pores to deter- 

ine column porosity and axial dispersion, 3) a non-binding but 

ore-penetrating tracer to determine particle porosity, film diffu- 

ion and pore diffusion, and 4) the target molecules to determine 

he parameters of the binding model. 

The first stage is increasingly recognized to be crucial for deter- 

ining unbiased values of all other model parameters that can be 

ransferred across operating conditions, system configurations and 

cales. Neglecting extra column effects or even small errors in ac- 

ounting for them can have a large impact on the binding param- 

ters that are estimated at a later stage [31] . Extra column effects 

ave been previously accounted for by shifting the time scale [24] . 

ore comprehensive models comprise a series or network of DPFR 

nd CSTR [23] . The respective model parameters are isolated by re- 

oving the column from the simulated system. 

In the second stage, model parameters for characterizing the 

acked bed are isolated by setting the film diffusion coefficient 

o zero, which effectively eliminates Eqs. (2) –(6) from the system. 

extran is normally used as non-binding and non-pore penetrat- 

ng tracer. However, this tracer often behaves non-ideally, which 

https://github.com/modsim/CADET
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auses specific challenges in the parameter estimation procedure 

s will be discussed in Section 7.3 . 

In the third stage, model parameters for characterizing the 

orous particles are isolated by setting the adsorption constant 

o zero, which effectively eliminates Eqs. (3) –(6) from the system. 

deally, the target molecule is used as pore-penetrating tracer un- 

er non-binding conditions, such as high salt in ion-exchange chro- 

atography. Smaller tracers, such as acetone, are prone to overesti- 

ate the film and pore diffusion coefficients. Occasionally, the film 

nd pore diffusion coefficients remain too correlated to be esti- 

ated independent of each other. In these cases, the pore diffusion 

an be determined from some other type of experiment, such as 

sing confocal laser scanning microscopy [19] . Alternatively, a sim- 

ler transport model can be used, such as the lumped rate model 

ith pores. 

In the fourth stage, the parameters of the binding model are 

stimated. Due to inherent non-linearity of the more complex 

inding models that are required for describing preparative chro- 

atography, this is usually by far the most complicated and time- 

onsuming stage, in particular for complex multi-component sys- 

ems with competitive binding. Base-line separation is typically 

ot achieved in experimental data available for calibrating such 

odels. Hence, the binding model parameters of multiple chem- 

cal components cannot be completely isolated from each other. 

owever, correlations between the binding parameters can be re- 

uced by estimating them from a set of several chromatograms 

hat are measured at specifically designed operating conditions. 

or large molecules, such as monoclonal antibodies, this typically 

ncludes a breakthrough and two or three gradient elution exper- 

ments with varying slopes. The design of such experiments can 

e optimized by evaluating different estimation strategies on syn- 

hetic data that are generated using an initial guess of plausible 

alues for the sought model parameters. Similar components, such 

s charge variants or high/ low molecular weight impurities, are 

ften lumped in groups to reduce model complexity and the num- 

er of estimated parameters. 

Measurement data are generally prone to random and system- 

tic errors that are in turn propagated to the estimated parame- 

ers. In the proposed stagewise procedure, parameters estimated 

n one stage are fixed in the next and, consequently, parameter er- 

ors are carried over to subsequent stages. This can be avoided in 

 Bayesian approach where the posterior parameter distribution of 

ne stage is used as prior information in the next stage, which will 

e subject of a separate study. Without that, it is particularly im- 

ortant to be accurate in the early stages. 

. Materials and methods 

Chromatographic cation exchange runs were conducted on Äkta 

vant (GE Healthcare). Blue Dextran 20 0 0 (GE Healthcare) was 

sed for non-pore penetrating pulse experiments. A volume of 

 mL Dextran solution with a concentration of 0.002 mM was in- 

ected at a flow rate of 5 mL/min with and without column at- 

ached. These experiments were carried out in duplicates. Dextran 

hromatogram data was measured at UV 280 nm. 

Pore-penetrating as well as load, wash and elution steps were 

erformed using a Fractogel SO 

−
3 

(EMD Millipore) resin in a packed 

ed column with inner diameter 16 cm and length 25 cm at a flow 

ate of 5 mL/min. The column was pre-equilibrated for 3 CV with 

00 mM sodium acetate buffer containing 1 M NaCl at pH 5.0. The 

olumn was equilibrated for 3 CV with 100 mM sodium acetate 

uffer at pH 5. 

Pulse injections under non-binding conditions were run using 

reviously purified monomeric antibody as tracer. The antibody 

as prepared in a 100 mM sodium acetate buffer with 500 mM 

aCl at pH 5 to prevent adsorption. 
4 
For elution experiments, the column was loaded with 152 mL 

r 540 mL, respectively, of Filtered Virus Inactivated Pool (FVIP) of 

onoclonal antibody product. The material was obtained from a 

revious capturing step. The antibody material was produced by 

HO cell culture. The FVIP material was conditioned with argi- 

ine, targeting 50 mM arginine concentration in the FVIP material. 

 wash step was conducted with 100 mM sodium acetate buffer 

t pH 5. The elution step was conducted with a linear 1 mM/CV 

radient between two buffers with 100 mM sodium acetate and 

00 mM sodium acetate plus 1 mM NaCl, respectively, at pH 5.0. 

fter elution the column was cleaned using 1 M NaOH solution. 

hromatogram data of the load, wash and elution experiments 

ere measured at UV 300 nm and UV 280 nm. For the 152 mL 

oad volume run, fractionation samples were taken at 8 mL frac- 

ion volume starting at 0.1 AU of UV 280 signal. 

. Data smoothing 

Experimental data is often noisy, and the goals introduced in 

he next section are highly sensitive not only to the shape of the 

hromatogram but also to such noise. In addition, most of these 

oals and some search strategies also require a smooth first deriva- 

ive. Hence, the data needs to be smoothed to reduce the noise. For 

outine application in industrial workflows, the smoothing needs 

o be automatic and work robustly, i.e. not attenuate relevant fea- 

ures, without human involvement. This is complicated by the sit- 

ation that an experiment with detached column typically results 

n a signal length in the order of seconds, a non-binding but pore 

enetrating tracer pulse in the order of minutes, and a gradient 

lution experiment in the order of hours. Thus, the automated 

moothing method must work on data of very different time scales 

nd still reliably isolate a signal from the noise that retains all rele- 

ant features and is smooth enough to obtain accurate first deriva- 

ives. 

Most high frequency noise removal strategies fall into a few 

eneral categories. The Fast Fourier Transform (FFT) [32] converts 

 signal to frequency space where high frequency ranges can be 

emoved before the signal is converted back to the original space. 

FT filters are fast and suitable for removing high frequency noise. 

hey can be robustly automated and include a simple method for 

omputing the first derivative. Moving average filters and win- 

owed polynomial regression, such as the Savitzky-Golay filter 

33] , can also locally approximate the signal with reduced noise. 

hese methods depend on several parameters for controlling the 

indow width and smoothing factors. Such filters can work quite 

ell with humans choosing these parameters but are generally 

ore difficult to robustly automate as compared to splines with 

nly one parameter. Splines [34] are another alternative for recon- 

tructing signals from noisy observations, and they can also pro- 

ide first derivatives. However, splines can become computation- 

lly expensive due to an increased number of required knots for 

ignals with high frequency noise. The required knot number can 

e automatically determined as will be detailed in the next para- 

raph. 

We now introduce an automated smoothing procedure for noisy 

hromatograms that is implemented in CADET-Match. The pro- 

edure is illustrated using a previously published chromatogram 

30] shown in Fig. 1 A. This example is typical for industrial data 

nd the signal contains particularly small and large features. Pre- 

iminary tests have revealed that no single choice of the above de- 

cribed methods can automatically and robustly remove measure- 

ent noise from chromatograms without filtering out relevant fea- 

ures over a wide range of time scales. However, satisfying results 

ere achieved by combining an FFT based filter with a spline. Prior 

o the smoothing procedure, the chromatograms are normalized by 

ividing the concentrations of each component by the maximum 



W. Heymann, J. Glaser, F. Schlegel et al. Journal of Chromatography A 1661 (2022) 462693 

Fig. 1. Original and smoothed signal (A) and first derivative (B) of an example chromatogram taken from [ 30 ], critical frequency (C) and spline knots (D). 
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oncentration of that component. This transformation is reversed 

fter the smoothing procedure. 

First, a third-order Butterworth low pass filter [35] is applied 

o the normalized chromatogram using the scipy.signal.butter func- 

ion [36] . The Butterworth filter is as flat as possible in the pass-

and below the critical frequency and then dampens the sig- 

al with 20 decibel per decade. A suitable critical frequency for 

moothing a given chromatogram is automatically determined us- 

ng the so-called elbow point method. Fig. 1 C shows the loga- 

ithm of the normalized root mean square difference (NRMSD) be- 

ween the filtered and original signals over the critical frequency 

f the filter. The elbow point maximizes the distance between that 

urve and a straight line between the extreme points. It indicates 

he best compromise between removing as much noise as possible 

hile approximating the signal as accurately as possible. 

Second, a 5 th order spline with non-equidistant knots is 

pplied to the low pass filtered chromatogram using the 

cipy.interpolate.UnivariateSpline function [36] . Cubic splines 

ould be sufficient for approximating the original signal, but 
5 
igher order splines are beneficial for computing derivatives. A 

uitable number of knots is determined using the elbow point 

ethod again. Fig. 1 D shows the logarithm of the NRMSD be- 

ween the approximated and original signals over the number of 

nots. This elbow point indicates the best compromise between 

sing as few knots as possible while approximating the signal as 

ccurately as possible. To the left of the elbow point, the NRMSD 

rops very quickly with an increasing number of knots. Then, the 

pline switches from smoothing to interpolating and the NRMSD 

ecreases very slowly. Technically, a smoothness factor is passed 

o the SciPy function instead of the number of knots. The function 

nternally computes the minimal number of knots for which the 

RMSD falls below the specified smoothness factor. 

The presented smoothing procedure also allows computing 

mooth first derivatives, Fig. 1 B. It is routinely applied to every 

hromatogram, measured or simulated. The latter allows saving 

ompute time by using rather coarse simulator tolerances in early 

tages of the parameter estimation procedure that could otherwise 

ause numerical problems with some of the applied search algo- 
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Table 1 

Synthetic data with resulting NRMSD for illustrating 

alignment issue. 

Ground Truth Scenario 1 Scenario 2 

k a 2.00 2.9e02 2.00 

k d 10.0 3.7e03 10.0 

ν 7.00 9.60 6.00 

σ 50.0 99.0 50.0 

SSD 4.3e + 00 1.5e + 01 

NRMSD 4.2e-03 7.7e-03 
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ithms. The smoothing procedure is applied once to each mea- 

ured chromatogram. Iterative search strategies can involve numer- 

us similar simulations with hardly varying elbow points for the 

esulting chromatograms. Hence, these points are pre-determined 

or a representative set of initial values and reused further on. Very 

mooth input data might not show distinct elbow points for the 

utterworth filter and/ or the spline approximation. In these cases, 

he respective methods are simply disabled. 

. Goal system 

We introduce a new goal system for estimating chromatogra- 

hy model parameters. Here, goal means a set of shape-sensitive 

etrics. Each metric is a single scalar value such as the time dif- 

erence between simulation and measurement at peak maximum, 

he height difference at peak maximum, etc. Metrics are defined on 

he basis of specific knowledge of the modeled process and of typ- 

cal errors in the measurement data. The metrics in a goal can be 

assed to a multi-objective search algorithm or they can be com- 

ined into one objective and passed to a single-objective search 

lgorithm. 

Multiple metrics can guide (multi-objective) search strategies 

uch better to the desired optimum than the commonly ap- 

lied sum of squared differences (SSD) can guide (single objec- 

ive) search strategies, as will be demonstrated in the results sec- 

ion. The metrics are grouped into scores to organize the speci- 

cation of goals for different parameter estimation procedures in 

ADET-Match. A suitable goal must have the property that as the 

t quality improves the value of at least one metric must de- 

rease and as the fit quality worsens, the value of at least one 

etric must increase. A goal that does not have this property can 

uide search algorithms in the wrong direction. This might ap- 

ear trivial but is critically important and at the core of why new 

oals were designed. Due to competitive binding and other com- 

lex mechanisms, many model parameters influence the simulated 

hromatograms in non-linearly coupled ways. Therefore, some cus- 

omarily applied metrics such as SSD can increase while the model 

arameters move closer to their correct values. 

In addition, measured chromatograms from industrial large- 

cale applications are often affected by systematic errors such as 

ump delays that can cause a time offset between the measured 

nd simulated signals, unless the model captures the cause of the 

elay which is often not possible in practice. Pump delays occur 

hen there is a difference between when a pump is given the sig- 

al to start and when it starts. This data is usually not available 

nd thus can’t be modeled. To further complicate matters pump 

elays may not be consistent between runs or within a run. A good 

oal needs to account for this, since otherwise the simulated peaks 

nd up in the correct location but with the wrong shape. Wrong 

hapes generally indicate errors in the underlying physics of the 

odel. Hence, good metrics should prefer peaks with nearly fitting 

hape but small offsets rather than peaks without offset but with 

rong shapes. 

.1. Sum of square difference 

For the SSD, the squared differences between simulated and 

easured chromatograms are summed up over the time points, 

q. (12) . For the NRMSD, the SSD is divided by the number of time

oints before taking the square root and dividing the result by the 

aximum of the measurement data, Eq. (13) . Due to the mono- 

onicity of this transformation, SSD and NRMSD have the same 

inima. These metrics can be applied to the entire chromatogram, 

 = { 1 ; . . . ; N d } , or a subset of the data, J ⊂ { 1 ; . . . ; N d } . The SSD is

ost commonly applied with gradient descent search algorithms. 
6 
ence, it is included here for comparison. The theory is well es- 

ablished in the framework of maximum likelihood estimation for 

ndependent and identically distributed random measurement er- 

ors. However, these preconditions are generally not valid for mod- 

ling large-scale preparative chromatography where systematic er- 

ors such as feed variations, pump delays and flow rate variations 

ypically dominate the detector noise. The NRMSD is better suited 

han the SSD for interpreting the results, because the numerator 

as the same unit as the data and is related to the maximum con- 

entration by the denominator. 

SSD ( X i , Y i ) J = 

∑ 

j∈ J 

(
X i, j − Y i, j 

)2 

(12) 

NRMSD ( X i , Y i ) J = 

√ 

1 
| J | 

∑ 

j∈ J ( X i, j −Y i, j ) 
2 

max 
j∈ J | X i, j | (13) 

The SSD requires a sufficient overlap between the simulated 

nd measured chromatograms to be sensitive to parameter changes 

nd guide the search algorithm towards the optimum. This can 

omplicate the choice of suitable starting points, in particular for 

harp and/ or small peaks. A further disadvantage of the SSD is 

llustrated in Fig. 2 using a synthetic example with parameters 

hown in Table 1 . The parameters of scenario 2 are much closer 

o the ground truth, with only a relatively small deviation in the 

haracteristic charge, ν , even though Scenario 1 has a smaller SSD 

nd would hence normally be considered a better fit. In addition, 

he peak shape of Scenario 2 is more similar to the ground truth 

ut out of alignment. 

In real experiments, such time offsets are often caused by pump 

elays that cannot be explained by the mechanistic model. In this 

ase, the SSD favors peaks that are in the right position even 

hough it is obvious to the human eye that the peak shape is 

rong. The model can also reproduce the correct peak shape but 

ot in the right position with a much larger SSD. As the peak 

hape is predominantly determined by the binding model parame- 

ers, the SSD would lead to unphysical parameter values. Hence, we 

ill now introduce alternative metrics that favor peak shape over 

osition and are less demanding on the choice of suitable starting 

oints. 

.2. Alternative metrics 

The shape and position of a chromatogram are determined by 

ass transport through the entire system, including the column 

nd external volumes, and binding to the functionalized resin. The 

isadvantages of the SSD are avoided by separately measuring the 

hape, position, and height of individual peaks without requir- 

ng base line separation. Metrics for peak position are sensitive 

o changes of the respective model parameters, independent of 

eak overlaps between simulation and measured data. This pro- 

ides flexibility and robustness with respect to the choice of start- 

ng points for the search algorithms, which is critically important 

or automation in industrial applications. Focusing on individual 
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Fig. 2. SSD chromatogram alignment issue illustrated by synthetic data. 
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eaks allows to reduce the impact of process variations and fur- 

her components that are not fully included in the model. For ex- 

mple, pump washes or pressure alarms can cause spurious peaks, 

nd industrial feeds usually contain large numbers of more or less 

ncharacterized impurities. In such cases, separate metrics can be 

ssigned to distinct but partially separated peaks of target com- 

onents and impurities of high and low molecular weight. Sep- 

rate metrics also help to provide (multi-objective) search algo- 

ithms with more precise information on which component im- 

acts which peak, as will be detailed in Section 9 . All metrics are

esigned for minimization and yield zero for a perfect match be- 

ween simulation and experiment. 

.2.1. Peak shape 

The shape metric is the most innovative of the new metrics 

nd a core component of nearly all scores. It is the difference be- 

ween one and the maximum of the Pearson correlation [37] be- 

ween measured and simulated chromatograms over a continuous 

ange of time offsets, Eq. (14) . For evaluating this metric, the simu- 

ated chromatogram is shifted in time, Y τ
i 
(t) = Y i ( t − τ ) . The maxi-

um in Eq. (14) is determined by an initial grid search followed by 

owell’s method. While it is advisable for the SSD to simulate the 

hromatogram on the same grid as the measurement data, contin- 

ous offsets require interpolating the simulated data. This is im- 

lemented in CADET-Match using the 5th order spline from the 

moothing procedure described in Section 6 . Allowing for continu- 

us time offsets that are independent of the discrete measurement 

rid is crucial for creating a smooth metric. The shape metric is 

ypically applied to individual peaks that are sliced out of the chro- 

atogram. By design, this metric only accounts for shape similar- 

ty and requires two other metrics to measure the time offset and 

eight difference between simulation and measurement data. 

Shape ( X i , Y i ) J = 1 − max 
τ

(
cov ( X i ,Y τi ) J 
σX i ,J 

σY τ
i 

,J 

)
(14) 

.2.2. Peak position 

The position metric can be more complex than it might first 

ppear. It is based on the time offset, t s , obtained from maximizing 

q. (15) . 

t s ( X i , Y i ) J = arg max 
τ

(
cov ( X i ,Y τi ) J 
σX i ,J 

σY τ
i 

,J 

)
(15) 

The standard position metric gives an immediate penalty for a 

ime offset with a linear ascent to one when out of alignment by 

 r , Eq. (16) . Here, t r is the length of the measurement time interval. 
7 
t can be replaced by the retention time of a non-binding tracer if 

ufficient starting points are provided to the search algorithm. As 

ill be shown in the results section, this metric it a good choice for 

stimating column and particle porosity. However, it requires great 

are in running experiments to ensure there are as few delays as 

ossible and alarms are immediately canceled. Such delays affect 

he chromatogram almost exactly like changes in the column and 

article porosities. As previously discussed, in the presence of such 

elays it can be advantageous for the parameter estimation proce- 

ure to compromise on the alignment of simulated and measured 

eaks while matching their shape and height. Hence, an alternative 

osition metric is introduced that initially reduces the penalty by 

/2 in a range of less than 1/10 t r and then linearly ascends to one 

hen out of alignment by t r , Eq. (17) . Fig. 3 illustrates the differ-

nce between the standard and initially reduced position penalty 

etrics. The initial reduction, 1/2, and range, 1/10, are chosen by 

xperience and can be changed by the user. 

P osition ( X i , Y i ) J = 

t s ( X i , Y i ) J 
t r 

(16) 

 ositio n 

∗( X i , Y i ) J = 

{ 

1 
2 

t s ( X i , Y i ) J 
t r 

, 
t s ( X i , Y i ) J 

t r 
≤ 1 

10 
19 
18 

t s ( X i , Y i ) J 
t r 

− 1 
18 

, 
t s ( X i , Y i ) J 

t r 
> 

1 
10 

(17) 

.2.3. Peak height 

The peak height metric relates the maximal concentration of 

he simulated chromatogram to that of the measured data, Eq. (18) . 

his metric ascends to one when the difference in either direction 

s larger than 100%. 

Height ( X i , Y i ) J = 

∣∣∣∣1 −
max 

j∈ J 
Y i, j 

max 
j∈ J 

X i, j 

∣∣∣∣ (18) 

.3. Combined scores 

The previously introduced metrics serve as building blocks for 

reating scores that quantify the difference between simulated 

hromatograms and measurement data. Scores are defined for indi- 

idual components and can target the full chromatogram, individ- 

al peaks, or parts thereof, such as only the front of a peak. Each 

core is a set of metrics that depend on the index of the com- 

onent, i , and on the set of considered time points, J. Goals will 

e composed of one or several scores that can then be combined 

nto one objective or passed to a multi-objective search algorithm. 

he following scores have been defined per component this may 
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Fig. 3. Comparison of standard position penalty and initially reduced position penalty metrics. 

i

b

7

m

d

b

7

t

a

c

v

u

s

t

s

t

p

I

o

a

P

s

e

r

p

S

S

S

7

 

r

b

t

i

o

p

i

t

t

s

d

f

c

t

h

o

s

i

a

o

c

o

i

c

o

o

t

7

m

c

c

e

r

a

s

i

t

o

o

d

nclude using a virtual component created by summing any com- 

ination of components. 

.3.1. Sum of square difference 

The SSD score is the set of differences between simulated and 

easured chromatogram data, Eq. (19) . For technical reasons, each 

ifference is interpreted as separate metric. In Section 8 , a goal will 

e defined as sum of squares of these metrics. 

S SSD = 

{
X i, j − Y i, j 

∣∣ j ∈ J 
}

(19) 

.3.2. Full peak 

The most straightforward of the new scores is the combina- 

ion of peak shape, position, and height, S Gauss . This score is usu- 

lly applied to a time interval, specified by the index set, J, that 

ontains a single peak of nearly Gaussian shape. This time inter- 

al is not automatically detected but needs to be specified by the 

ser. A more elaborated score, S Peak , additionally accounts for the 

hape, minimum and maximum of the time derivative and is bet- 

er suited for fitting non-Gaussian peaks. By combining the peak 

hape with the shape of its derivative, this score is highly sensi- 

ive to the curvature of the chromatogram. The time offsets in the 

eak and in the slope are technically not constrained to be equal. 

n practice they hardly differ, except for the very first iterations 

f search algorithms with poor starting points. The scores S ∗
Gauss 

nd S ∗
Peak 

are analogously defined with Positio n ∗( X i , Y i ) J in place of 

osition ( X i , Y i ) J . As will be demonstrated in the results section, the 

core S Peak with standard position penalty is particularly useful for 

stimating transport parameters, while the score S ∗
Peak 

with initially 

educed position penalty is more suitable for estimating binding 

arameters. 

 Gauss = 

{
Shape ( X i , Y i ) J ; P osition ( X i , Y i ) J ; Height ( X i , Y i ) J 

}
(20) 

 Slope = 

{ 

Shape 
(

˙ X i , ˙ Y i 
)

J 
; Height 

(
− ˙ X i ,− ˙ Y i 

)
J 
; Height 

(
˙ X i , ˙ Y i 

)
J 

} 

(21) 

 Peak = S Gauss ∪ S Slope (22) 

.3.3. Peak front 

In some cases, only the front of a peak can be used for pa-

ameter estimation while other parts of the peak are deteriorated 

y unspecific interactions of a tracer molecule with the column or 
8 
ubing. Dextran is a prominent example for such non-ideal behav- 

or that leads to strong tailing and a reduced peak height. On the 

ther hand, Dextran is commonly applied as tracer that does not 

enetrate the particle pores. Errors in the execution of an exper- 

ment can also render the back of a peak unusable for parame- 

er estimation. These situations are addressed by a score, S F ront , 

hat considers shape and position but not height of the peak. This 

core is typically used with rather short time intervals and few 

ata points. 

S F ront = 

{
Shape ( X i , Y i ) J ; P osition ( X i , Y i ) J 

}
(23) 

The peak front score is designed to extract as much usable in- 

ormation as possible from the chromatogram. Unsupervised appli- 

ation of this score requires to automatically determine the usable 

ime interval while robustly removing the non-ideal parts with 

igh precision on the cut points. For dextran data, the back end 

f this interval is chosen at the first inflection point of the mea- 

ured chromatogram, i.e. the upper cut point is at the first max- 

mum of the time derivative. By experience, this is a good choice 

s non-ideal interactions mainly impact on the height and tailing 

f the peak. The lower cut point is chosen where the measured 

hromatogram starts to differ from the baseline by more than 0.1% 

f the concentration at the upper cut point. By experience, 0.1% 

s a robust choice for this threshold. The exact positions of these 

ut points are determined using Powell’s method on the continu- 

us spline approximation from Section 5 . The nearest time points 

f the discrete measurement data are then used as boundaries of 

he time interval specified by J. 

.3.4. Fractionation data 

Optical detectors that are typically applied for measuring chro- 

atograms can usually not distinguish between different chemical 

omponents. Instead, they deliver a single sum signal where the 

ontributions of the individual components are weighted by their 

xtinction coefficients. Such signals alone cannot be used for pa- 

ameter estimation unless the peaks of the relevant components 

re sufficiently separated. For instance, the acidic, main, and ba- 

ic components of a monoclonal antibody often completely overlap 

n a single peak. This situation is normally addressed by fractiona- 

ion, i.e. pooling the efflux of the column into a series of vials. Each 

f these vials is then analyzed offline to quantify the components 

f interest, which provides additional information for setting up a 

edicated parameter estimation score. 
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The previously introduced metrics can generally be applied to 

he concentrations in each vial using the centers of the corre- 

ponding collection intervals as time points. For precise compar- 

son, the corresponding per component simulations are averaged 

ver the same collection intervals when a metric is applied to frac- 

ionation data. The resulting information is often sparse, with 5 

o 10 fractions per peak, and can be afflicted with additional er- 

ors in the fractionation times and volumes. Small shifts in the 

ollection intervals can cause major changes in the distribution of 

omponents between the analyzed fractions, particularly for sharp 

eaks. A spline is applied to the original simulated data before it 

s shifted and virtually fractionated to determine the time offset, 

 s , in order to maintain sub-grid accuracy. Based on this offset, the 

cores S ∗Gauss and S ∗
Peak 

as well as their immediately penalized ver- 

ions can be computed. Analogously, the SSD score can be applied 

o fractionation data by averaging the simulations over the collec- 

ion intervals. 

. Search strategies 

CADET-Match uses two alternative search strategies, gradient 

escent, and a multi-objective genetic algorithm. For gradient de- 

cent, all metrics need to be combined into a single scalar value, 

hile the genetic algorithm can operate on multiple metrics. 

.1. Gradient descent 

Gradient descent algorithms search for a local optimum of the 

oal function using derivative information with respect to the 

ought parameters [38] . Gradient descent has long been used for 

arameter estimation in chromatography. It is very efficient near 

he sought optimum but can fail if the goal function is not smooth 

r the Jacobian becomes singular. Moreover, this algorithm is prone 

o becoming trapped in local optima, which can be far from the 

lobal optimum. This can be avoided by basin hopping or multi- 

tart strategies. The latter is often applied when refining the results 

f population-based search strategies. 

.2. Genetic algorithm (GA) 

Genetic algorithms (GA) where first published by Holland in 

975 [39] and are an example of biomimicry. At their core they 

ork like a colony of bacteria adapting to an outside environment 

nd share many of the same features. GAs are embarrassingly par- 

llel. An initial population is created, often using quasi-random 

ethods such as Latin hypercube sampling [40] or Sobol sequences 

41] . Each member of the population is then evaluated based on 

ne or more objectives. At the end of each generation the fittest 

embers survive and reproduce to form the next generation. The 

ext generation is created by a combination of breeding and mu- 

ation on the surviving members. There are variations in this pro- 

edure that maintain population diversity, choose members to be 

ncluded in the next generation and change how breeding and mu- 

ation are implemented. These variations result in different algo- 

ithms such as NSGA2 [42] , NSGA3 [43] and SPEA2. In view of the

o free lunch theorem [1] , different GA variants were tested and 

ptimized on a variety of problems before settling on NSGA2 for 

ingle-objective problems and NSGA3 for multi-objective problems. 

.3. Progress monitoring 

Building complex models correctly, properly processing experi- 

ental data, and determining suitable starting points can be diffi- 

ult and tedious tasks. Based on experience, new models or con- 

epts are unlikely to be correctly implemented on the first at- 

empt. However, such issues can only be tested by attempting to 
9 
t model to data. Since errors can often be identified in early 

hases of the parameter estimation process, CADET-Match pro- 

ides functionality to monitor the progress of specific indicators 

uch as peak height, shape, mass, etc. This allows observing if the 

tarting points yield reasonable results and if the search algorithm 

ontinuously improves the goal. Online monitoring enables early 

borting if progress is poor or if results are already good enough. 

his is essential for rapid testing of models, goals, starting points 

nd stopping criteria. Since suitable starting points can be hard to 

etermine, a GA with rather large population size is generally a 

ood choice for initial testing. Multi-start gradient search is not a 

ood alternative, as parallel iterative processes are more difficult to 

onitor. 

.4. Parameter transformation 

Most search strategies struggle when the parameters to be esti- 

ated are spread over orders of magnitude or correlated with each 

ther. Parameter transformations can help to soften these chal- 

enges. CADET-Match provides several transformation rules, i.e. bi- 

nique maps between model parameters, p, that are passed to the 

hromatography simulator and estimated parameters, p ′ , that are 

assed to the search algorithm. These transformations are based 

n upper bounds, ˆ p , and lower bounds, p̌ , of the model parame- 

ers. 

The linear transformation, Eq. (24) , maps the original range 

 ̌p , ˆ p ] to [0,1]. This is usually sufficient when the upper and lower 

arameter bounds are less than three orders of magnitude apart 

rom each other. For wider ranges, a nonlinear transformation, 

q. (25) , is advisable. The latter automatically adapts the step 

idth of the search algorithm to the magnitude of the respective 

odel parameter. Otherwise, the same step could be huge for one 

arameter but tiny for another. 

p = 

(
ˆ p − p̌ 

)
· p ′ + p̌ (24) 

p = exp 

((
log 

(
ˆ p 
)

− log 
(

p̌ 
))

· p ′ + log 
(

p̌ 
))

(25) 

Nonlinear parameter correlations are hard to detect and need 

o be specifically addressed. For instance, the adsorption and equi- 

ibrium constants, k a and k eq , are usually much less correlated 

han the adsorption and desorption constants, k a and k d . The re- 

ation k eq = k a / k d allows to pass k a and k d to the simulator while 

he search algorithm operates on k a and k eq . The corresponding 

ransformation, Eqs. (26) and 27 , also accounts for large parame- 

er ranges. This decouples the binding rate from the concentration 

quilibrium. 

k a = exp 

((
log 

(
ˆ k a 

)
− log 

(
ǩ a 

))
· k ′ a + log 

(
ǩ a 

))
(26) 

k d = 

exp 

((
log 

(
ˆ k a 

)
−log 

(
ǩ a 

))
·k ′ a + log 

(
ǩ a 

))
k ′ eq 

(27) 

. Practical application 

The goal system and search strategy are first verified on syn- 

hetic examples of increasing complexity ( Section 10 ) and then val- 

dated on experimental data ( Section 11 ). The parameter estima- 

ion procedure is highly automated and the same for all case stud- 

es. 

Depending on the current stage in the parameter estimation 

rocedure ( Section 4 ) and on the quality of the data, the goals

re based on one of the S F ront , S Peak or S ∗
Peak 

scores and sepa- 

ately on the S SSD score for comparison. While SSD is used for 

earch, the results of different scores and search algorithms are 

ompared using NRMSD. The S scores are usually taken over 
SSD 
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Table 2 

Fixed parameters for simulating syn- 

thetic ground truth. 

Parameter Value Unit 

Q 2.88e-08 m 

3 /s 

A c 1.04e-04 m 

2 

L c 2.50e-01 m 

r p 4.50e-05 m 

� 2.25e + 00 mol/ m 

3 
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he whole chromatogram, J = { 1 , . . . , N d } . For single-objective op- 

imization, the scores of multiple components are simply merged 

nto one set. In case only a sum signal can be measured, the corre- 

ponding simulations are also summed, weighted by the respective 

xtinction coefficients if necessary, and both sum signals are com- 

ared as in the single-component case. The corresponding goal, 

 SSD , is created by adding the squared metrics in this set, Eq. (28) .

ingle-objective goals for the alternative scores are similarly cre- 

ted by merging the scores of different components and adding 

he squared metrics in the resulting set. CADET-Match offers other 

ingle objective goals, such as the average or the maximum of the 

etrics, but they are not used in this study. 

G SSD = 

N c ∑ 

i =1 

N d ∑ 

j=1 

(
X i, j − Y i, j 

)2 
(28) 

Multi-objective optimization is more demanding on the search 

trategy but can benefit from much richer information on the im- 

act of individual parameters or parameter groups on the path 

rom the starting points to the sought optimum. For example, col- 

mn porosity affects the peak position metric more strongly than 

he peak shape metric and column dispersion affects the peak 

hape metric more strongly than the peak position metric. Pro- 

iding these metrics to a multi-objective search algorithm practi- 

ally decouples the parameters, i.e. progress can be made in the 

bjectives independent of each other. If these objectives are not in 

onflict, which is most often the case, the search algorithm still 

onverges to a unique optimum. In more complex settings with 

umerous parameters and metrics, progress can be made in sev- 

ral objectives while other objectives are temporarily sacrificed 

ven when they are not conflicting in the global optimum. The 

ulti-objective approach improves the performance of genetic al- 

orithms, as these are population-based by nature, while gradient 

earch is more efficient on single objectives. 

In addition, multi-objective search automatically detects con- 

icting metrics, in case they exist, and provides detailed informa- 

ion on the resulting Pareto front [44] . This usually indicates a 

radeoff, e.g., between matching shape and position as illustrated 

n Fig. 2 . In such cases, the user can manually select the preferred

ptimum. To fully automate this process, the Pareto optimal pa- 

ameter set with lowest mean of the involved metrics is selected. 

q. (29) defines the mean, S̄ , of a given set, S, of metrics, M, with

 S| elements. The metrics range from 0 to 1 with 0 indicating a 

erfect match and 1 a very poor match. This scale is reversed be- 

ore and after taking the geometric mean, as otherwise one very 

ow metric could potentially dominate the entire mean. For com- 

arison, the mean, S̄ , is reported on the final result even when the 

ptimization was based on the S SSD score. 

S̄ = 1 −
( ∏ 

M∈ S 
( 1 − M ) 

) 1 
| S | 

(29) 

The search space is confined by box constraints that are speci- 

ed in the case studies. A Sobol sequence is used to create a start- 

ng population with 100 N p individuals, where N p is the number 

f concurrently estimated parameters. When gradient descent is 

sed with S SSD , starting points with less than 5% peak overlap be- 

ween simulation and experiment are removed from the popula- 

ion without replacement to guarantee sufficient sensitivity of the 

oal with respect to changes in the estimated parameters. This is 

ot required for the new scores S F ront , S Peak and S ∗
Peak 

that include 

he peak position metric. This metric is naturally sensitive to pa- 

ameter changes, independent of the peak overlap. 

For gradient descent, the scores are always combined into a sin- 

le objective. The trust-region reflective algorithm [45] from the 

cipy.optimize.least_squares function [36] is started at each point 

f the population. These searches are independent of each other 
10 
nd run in parallel to save time. They are stopped with a toler- 

nce of x tol = 10 −10 or if the current simulation fails. Looser toler- 

nces were tested on synthetic examples and found to terminate 

oo soon in some cases. 

The non-dominated sorting genetic algorithm (NSGA) is used 

ith a single objective (NSGA2) for S SSD and multiple objec- 

ives (NSGA3) for S F ront , S Peak and S ∗
Peak 

. Distributed Evolutionary 

lgorithms in Python (DEAP) [46] is used for both algorithms. 

rossover and mutation rates of 1.0 are applied to ensure that in 

very generation each member will mutate at least one parameter 

nd swap parameters with at least one other member. The GA ter- 

inates after 30 generations without a new point being added to 

he Pareto front. Each entry on the final Pareto front is locally op- 

imized in parallel using the trust-region reflective algorithm from 

bove. This is a single-objective search, but the results are again 

nalyzed with respect to Pareto optimality based on the individual 

etrics. 

The reported wall clock times should be understood as approx- 

mate due to the non-deterministic nature of the GA, and small 

hanges in stopping criteria can cause substantial differences in 

untime. Moreover, the GA utilizes the available compute cores 

ore efficiently than gradient search. All simulations where run on 

 dual socket Intel(R) Xeon(R) CPU E5–2683 v4 @ 2.10 GHz with a 

otal of 32 cores and 64 threads with Ubuntu Linux 18.04.1, Python 

.7.7, Intel MKL 2019.3.199, CADET 4.0.1 and CADET-Match 0.6.13. 

ersion information on other used software packages is shown in 

able S1. CADET-Match can be installed from the Python Package 

ndex (PyPI). The full code, including the scripts for the follow- 

ng case studies, is freely available on GitHub ( https://github.com/ 

odsim/CADET-Match ). 

0. Synthetic case study 

The synthetic case study was designed using the general rate 

odel, based on experience with experimental data so that the pa- 

ameters are within plausible ranges. They have not been tuned to 

ake the output particularly easy or hard to match. All parameters 

re reported to two decimal places. The fixed parameters for sim- 

lating the synthetic ground truth data are shown in Table 2 . In 

ractice, these parameters are specified or separately determined 

y other means. The ground truth of the estimated parameters is 

eported in the following subsections. All synthetic data has a time 

pacing of 1 value per second. The column and tubing start off

ith a concentration of 0.0 except in the case of the SMA bind- 

ng model where the column begins with bound salt equal to the 

onic capacity ( Eq. (10) ) and a liquid phase salt concentration equal 

o the loading salt concentration. Independent and identically dis- 

ributed Gaussian noise with mean 0.0 and standard deviation 0.1% 

f peak maximum is added to the simulated chromatogram of each 

omponent. 

The synthetic cases are designed to verify the functioning of 

he goal system and search strategies. They are presented in the 

ame staged order that the parameters are normally estimated in 

 Section 4 ). However, the results of one stage are not carried over 

o the next stage, but previously estimated parameters are fixed at 

https://github.com/modsim/CADET-Match
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Table 3 

Non-binding and non-pore penetrating tracer pulse experiment. Synthetic ground truth, parameter 

bounds, estimated parameters and performance indicators. 

Ground Truth Bounds GA Gradient 

Lower Upper S Front S SSD S Front S SSD 

ε c 0.40 0.20 0.50 0.40 0.40 0.40 0.40 

D c 3.0e-07 1.0e-12 1.0e-5 3.0e-07 3.0e-07 3.0e-07 3.0e-07 

NRMSD 9.2e-05 1.4e-07 7.6e-06 8.5e-08 

S̄ 3.5e-07 3.3e-06 3.3e-06 3.3e-06 

Wall Time 0:03:10 0:03:37 0:04:44 0:02:24 

t

n

m

T

t

o

c

t

c

d

O

f

r

a

1

s

u

p

e

m

t

c

i

a

t

t

S

m

H

s

s  

c

m

fi

s  

g

t

a

t

F

t

1

p

e

s

a

t

Fig. 4. Non-binding and non-pore penetrating tracer pulse experiment. Synthetic 

ground truth and estimated chromatograms. 

Fig. 5. Non-binding but pore penetrating tracer pulse experiment. Synthetic ground 

truth and estimated chromatograms. 

i

t

e

F

r

heir nominal values, to test all goal and search algorithm combi- 

ations with a defined ground truth. In the synthetic case study, 

ultiple objectives of the new scores are generally not in conflict. 

he mean of the involved metrics, S̄ , is shown for comparison with 

he experimental case study, where it is used to select a Pareto 

ptimal parameter set, but not further discussed for the synthetic 

ase study. A match is considered successful if the sought parame- 

ers are correctly estimated to two digits. 

The parameter transformations from Section 8.4 are automati- 

ally applied. If the upper and lower bounds are less than 3 or- 

ers of magnitude apart, the linear transformation is used, Eq. (24) . 

therwise, the logarithmic transformation is used, Eq. (25) , except 

or the custom transformation for k a and k d , Eqs. (26) and (27) . The 

eference concentrations of the SMA model are c s r = 225 mol/ m 

3 

nd c 
p 
r = 450 mol/ m 

3 . 

0.1. Non-Binding and non-pore penetrating tracer pulse 

The first parameter estimation stage is omitted here, as the 

ynthetic data is generated without tubing and other holdup vol- 

mes that are external to the column. In the second stage, column 

orosity, ε c , and axial dispersion, D ax , are estimated from a pulse 

xperiment with a non-binding and non-pore penetrating tracer 

olecule. In theory, these model parameters do hardly depend on 

he chosen tracer molecule. In real experiments, dextran is typi- 

ally used for this purpose. This can be problematic due to non- 

deal behavior of this tracer that often leads to strong tailing and 

 reduced peak height, as has been introduced in Section 7.3 . Only 

he peak front is used because the rest of the peak is often de- 

eriorated by unspecific interactions of dextran with the column. 

ince this non-ideal behavior is not covered by the applied chro- 

atography model, it cannot be reproduced in the peak tailing. 

owever, an idealized setting is used for verifying the respective 

core, S F ront . The time interval J of this score is determined as de- 

cribed in Section 7.3 . It ranges from 269 to 359 s (Figure S1). For

omparison, the S SSD score is applied to the same slice of the chro- 

atogram. Table 3 shows the parameter bounds that were speci- 

ed in the search algorithms. The parameter estimation results are 

hown in Table 3 and Fig. 4 . Any combination of tested search al-

orithm and score were able to recover the estimated parameters 

o prescribed accuracy in less than five minutes. The NRMSD is 

bout 0.01% of the peak maximum for GA and S F ront and lower in 

he other cases. For the human eye, the fitted chromatograms in 

ig. 4 are practically indistinguishable from the synthetic ground 

ruth, even 100x magnified (Fig. S1). 

0.2. Non-Binding but pore-penetrating tracer pulse 

In the third stage, particle porosity, ε p , film diffusion, k f , and 

ore diffusion, D p , are estimated from a non-binding but pore pen- 

trating tracer pulse. These parameters depend on the size and 

hape of the chosen tracer molecule more strongly than porosity 

nd axial dispersion in the column. Hence, it is advisable to use 

he target protein under non-binding conditions, such as high salt 
11 
n ion-exchange chromatography. This setting is used for verifying 

he score S Peak in comparison with S SSE . The time interval J. cov- 

rs the whole peak (Fig. S2). Results are shown in Table 4 and 

ig. 5 . Also in this case, any combination of tested search algo- 

ithm and score were able to recover the sought parameters to pre- 
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Table 4 

Non-binding but pore penetrating tracer pulse experiment. Synthetic ground truth, parameter bounds, 

estimated parameters and performance indicators. 

Ground Truth Bounds GA Gradient 

Lower Upper S Peak S SSD S Peak S SSD 

ε p 0.30 0.2 0.5 0.30 0.30 0.30 0.30 

k f 2.0e-07 1.0e-09 1.0e-05 2.0e-07 2.0e-07 2.0e-07 2.0e-07 

D p 5.0e-11 1.0e-14 1.0e-06 5.0e-11 5.0e-11 6.0e-11 5.0e-11 

NRMSD 7.5e-07 7.5e-07 4.7e-04 7.5e-07 

S̄ 2.2e-08 1.8e-08 2.3e-05 1.6e-08 

Wall Time 0:04:08 0:04:16 0:05:06 0:07:48 

Fig. 6. Single component gradient elution experiments with different loading times and gradient slopes. Synthetic ground truth and estimated chromatograms. 
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cribed accuracy, now in under eight minutes. The NRMSD is 0.05% 

f the peak maximum for gradient search and S Peak and lower in 

he other cases. For the human eye, the fitted chromatograms in 

ig. 5 are practically indistinguishable from the synthetic ground 

ruth. When 100x magnified, a slight difference can be observed 

or gradient search with S Peak (Fig. S2). 

0.3. Single component gradient elution 

In the fourth stage, the parameters of the binding model are 

stimated from gradient elution data. The parameters of the non- 

quilibrium SMA binding model, i.e. scaled adsorption and desorp- 

ion rates, ˜ k a and 

˜ k d , characteristic charge, ν , and shielding coeffi- 

ient, σ , are estimated from gradient elution data. Only the ionic 

apacity, �, is set to the ground truth, as this parameter is usually 

etermined separately by titration. Estimating the binding parame- 

ers is particularly difficult due to strong non-linearity of the SMA 

odel. Hence, synthetic data of three linear gradient elution ex- 

eriments with different gradient slopes are used, and the loading 

hase of the first experiment is extended to a full breakthrough, 

s shown in Fig. 6 . The minor peaks in the other two experiments

ndicate complete loading. 

The column is loaded at inlet salt and protein concentrations 

f c in 
0 

= 180 mol/ m 

3 and c in 
1 

= 0 . 10 mol/ m 

3 for 6500 s (Fig. S3) in

he first experiment and for 1800 s in the second (Fig. S4) and 

hird experiment (Figure S5). It is washed at an inlet salt con- 

entration of c in 
0 

= 70 mol/ m 

3 for 20 0 0 s in all three experiments.

he elution gradients start at an inlet salt concentration of c in 
0 

= 

0 mol/ m 

3 and have slopes of 0 . 08 mol/ ( m 

3 · s ) , 0 . 06 mol/ ( m 

3 · s )

nd 0 . 04 mol/ ( m 

3 · s ) . They are applied for 60 0 0 s , 70 0 0 s and

10 0 0 s . The time interval of the S ∗
Peak 

score on the full break-

hrough in the first experiment was chosen from 10 0 0 s to 7300 s .

he minor peaks in the second and third experiments indicate 

omplete loading but are not utilized for parameter estimation. The 

ime intervals of the S ∗
Peak 

score on the elution peaks were chosen 

rom 8500 s to 140 0 0 s , from 50 0 0 s to 10 0 0 0 s and from 60 0 0 s

o 120 0 0 s . 

The sought parameters are estimated by fitting separate model 

nstances with respective boundary conditions simultaneously to 

ll synthetic experiments. The S ∗
Peak 

score is applied to the four ma- 
12 
or peaks and is composed of six metrics, resulting in 4 · 6 = 24 ob-

ectives for the genetic algorithm. A single-objective goal for gradi- 

nt search is created by adding the squared metrics. The S SSE score 

s applied to the same slices of the chromatograms. The parameter 

ransformation in Eqs. (26) and (27) is applied with 

˜ k eq = ̃

 k a / ̃ k d . 

hat is, the search algorithms operate on 

˜ k ′ a and 

˜ k ′ eq instead of ˜ k a 

nd 

˜ k d . Results are shown in Table 5 and Fig. 6 . The values of ˜ k d are

eported for completeness. Search bounds are not needed for this 

arameter. Any combination of search algorithm and score were 

ble to recover the sought parameters in less than 10 h. For the 

 

∗
Peak 

score, the GA was about two times faster than gradient search 

nd about three times faster for the S SSD score. The NRMSD is less 

han 0.01% of the peak maximum for gradient search and S ∗
Peak 

and 

ower in the other cases. 

0.4. Multi component gradient elution 

This case study is analogous to the previous one but with two 

omponents. The synthetic ground truth mimics charge variants of 

 protein without baseline separation. The transport parameters of 

he first three stages are the same for both components. SMA bind- 

ng parameters of both components are simultaneously estimated 

rom three gradient elution experiments, including one full break- 

hrough. Full chromatogram data is assumed to be known for each 

omponent. This is not normally given in practice but an important 

ntermediate step in verifying the goal system and search strate- 

ies. The assumption will be dropped in the next case study. In 

his case, the breakthrough peaks at the end of all three loading 

hases are large enough to provide useful information. Hence, the 

 

∗
Peak 

score is applied to two components and six peaks, resulting 

n 2 · 6 · 6 = 72 objectives. 

The inlet concentrations and durations of the load, wash and 

lution phases are the same as in the single component case (Figs. 

6-S8), with the same inlet concentrations for both proteins. The 

ime interval of the S ∗
Peak 

score on the full and partial break- 

hroughs were chosen from 0 s to 7300 s , from 0 s to 2500 s and

rom 0 s to 2500 s . The time intervals of the S ∗
Peak 

score on the

lution peaks were chosen from 90 0 0 s to 140 0 0 s , from 50 0 0 s

o 10 0 0 0 s and from 50 0 0 s to 120 0 0 s for the first protein and
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Table 5 

Single component gradient elution experiment. Synthetic ground truth, parameter bounds, estimated 

parameters and performance indicators. 

Ground Truth Bounds GA Gradient 

Lower Upper S ∗
Peak 

S SSD S ∗
Peak 

S SSD 

˜ k a 0.30 1.0e-02 1.0e + 02 0.30 0.30 0.30 0.30 
˜ k d 1.50 – – 1.50 1.50 1.50 1.50 
˜ k eq 0.20 1.0e-02 1.0e + 02 0.20 0.20 0.20 0.20 

ν 7.00 1.00 50.0 7.00 7.00 7.00 7.00 

σ 50.0 1.00 100 50.0 50.0 50.0 50.0 

NRMSD 1.8e-06 1.8e-06 6.5e-05 1.8e-06 

S̄ 1.4e-04 1.4e-04 1.7e-05 1.4e-04 

Wall Time 5:58:09 3:29:55 9:29:12 9:00:45 

Table 6 

Two component gradient elution experiment. Synthetic ground truth, parameter bounds, estimated parameters and performance indicators. 

Ground Truth Bounds GA Gradient 

Lower Upper S ∗
Peak 

S SSD S ∗
Peak 

S SSD 

˜ k a, 1 2.00 1.0e-02 1.0e + 02 2.00 2.00 1.90 2.00 
˜ k d, 1 10.0 – – 10.0 10.0 9.70 10.0 
˜ k eq, 1 0.20 1.0e-02 1.0e + 02 0.20 0.20 0.20 0.20 

ν1 7.00 1.00 50.0 7.00 7.00 7.00 7.00 

σ1 50.0 1.00 100 50.0 50.0 50.1 50.0 
˜ k a, 2 2.00 1.0e-02 1.0e + 02 2.00 2.00 2.40 2.00 
˜ k d, 2 10.0 – – 10.0 10.0 12.0 10.0 
˜ k eq, 2 0.20 1.0e-02 1.0e + 02 0.20 0.20 0.20 0.20 

ν2 5.00 1.00 50.0 5.00 5.00 5.00 5.00 

σ2 50.0 1.00 100 50.0 50.0 49.8 50.0 

NRMSD 3.3e-05 3.3e-05 1.8e-03 3.3e-05 

S̄ 9.9e-06 9.9e-06 6.1e-04 9.9e-06 

Wall Time 2 days: 21:23:58 1 day: 20:08:52 5 days: 12:20:55 3 days: 23:09:31 

Fig. 7. Two component gradient elution experiment with different loading times and gradient slopes. Synthetic ground truth and estimated chromatograms. 
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rom 90 0 0 s to 130 0 0 s , from 40 0 0 s to 90 0 0 s and from 40 0 0 s to

10 0 0 s for the second protein. 

Results are shown in Table 6 and Fig. 7 . Any combination of 

earch algorithm and score were able to recover the estimated pa- 

ameters, except for the scaled adsorption rates, ˜ k a , and shielding 

oefficients, σ , when estimated using S ∗
Peak 

and gradient search. 

he shielding coefficients deviate from the ground truth by less 

han 0.5%. Even though the scaled adsorption rates are off by 5% 

nd 20% for the first and second component, the corresponding 

RMSD is below 0.2% of the peak maximum, which is still hard to 

bserve by the human eye. This exemplifies that parameters with 

ittle impact on the model prediction are harder to estimate, which 

an be tolerated if accurate model predictions are sufficient for the 

pplication. However, it becomes problematic when accurate pa- 

ameter values are required, e.g., for tabulation and application in 

cenarios with higher impact on model predictions. 

The scaled desorption constants, ˜ k d , which are not directly esti- 

ated but deduced from the respective recovered equilibrium con- 

tants, ˜ k eq , are off by 3% and 20%. The increased compute time 
13 
f more than 5 days also indicates a flat optimum which is more 

hallenging for gradient search than for the GA. We speculate that 

he combination of S ∗
Peak 

and gradient search is particularly sensi- 

ive to the smoothing procedure, and this issue is subject of on- 

oing research. The other combinations improved the NRMSD by 

bout 2 orders of magnitude, and the same is true for the mean, 
¯
 , of the 72 metrics in the optimum. The other combinations ran 

etween 2 and 4 days with GA on S SSD being the fastest. 

0.5. Multi component gradient elution with fractionation 

The last synthetic case is close to real experimental data, as the 

ssumption that the full chromatogram of each component can be 

eparately observed is dropped. Instead, only the sum signal and 

ractionation data are available. The basic setup is parallel to the 

revious section but with additional fractionation data. Fractiona- 

ion is equivalent to an extremely coarse discretization of the sig- 

al and can yield less than 10 data points compared to thousands 

n a normal chromatogram. In practice, the column efflux is parti- 
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Fig. 8. Two component gradient elution experiment with different loading times and gradient slopes. Synthetic ground truth and estimated chromatograms: sum signal 

(top), fractionation data of component 1 (mid) and 2 (bottom). 
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ioned into a series of samples that are analyzed offline to deter- 

ine the concentration of each component. In industrial settings, 

arameter estimation is further complicated by additional sources 

f error from the fractionation process. The impact of such errors 

s currently studied but not in the scope of this publication. 

Here, each fraction is approximately 10 0 0 s in length. Precise 

ollection times and pool concentrations are shown in Tables S2- 

4. The parameters of the SMA binding model are estimated using 

he S ∗
Peak 

. score on the sum chromatogram and the S ∗
Gauss 

score on 

he fractionation data. S ∗
Peak 

with six metrics on six peaks and S ∗
Gauss 

ith three metrics to three data sets and two components results 

n 1 · 6 · 6 + 2 · 3 · 3 = 54 objectives. The S SSE score is applied to the

um chromatogram and to the fractionation data of each compo- 

ent. 

Results are shown in Table 7 and Fig. 8 . Similar to the previ-

us case, any combination of search algorithm and score were able 

o recover the estimated parameters, except the combination of 

 

∗
Peak 

and gradient search. The shielding coefficients again deviate 

rom the ground truth by less than 0.5%, and the scaled adsorption 

ates by 10% and 20% for the first and second component. Potential 

easons for this have been explained in the previous section. The 

RMSD is below 0.1% of the peak maximum. The NRMSD is more 

han two orders of magnitude smaller for the other algorithm and 

ore combinations. Differences are hardly visible to the human eye. 

his is remarkable, since this case is based on much sparser ex- 

erimental data than the previous one. However, systematic errors 

hat typically occur in real experiments are not considered here. 

hey will be present in the next case. The runtimes mainly dif- 

er between the algorithms and are similar between the scores, 
14 
ith the GA needing less than 2.5 days and gradient search about 

 days. 

1. Experimental case study 

An experimental dataset for two charge variants of a mono- 

lonal antibody has been measured at Amgen. Available are two 

extran pulses with detached column, two dextran pulses with at- 

ached column, two protein pulses under non-binding conditions, 

 gradient elution with fractionation and a gradient elution with 

xtended loading phase but without fractionation. Evaluating in- 

ustrial data is more complicated than synthetic, since there is 

o ground truth available. Moreover, the detector noise is typically 

ominated by systematic errors such as feed variations, pump de- 

ays and flow rate variations. These issues are addressed by our 

ew score system. The experimental case study comprises the four 

arameter estimation stages described in Section 4 . Parameters es- 

imated in one stage are fixed in the next, with the results sepa- 

ately passed on for each search algorithm and score combination 

sing the selected result shown in each stage’s table. Orthogonal- 

ty in the applied models and procedures avoids lumping of fun- 

amental mechanisms and minimizes parameter correlations. This 

reatly improves predictivity of the calibrated model across oper- 

ting conditions and scales. Modeling and propagation of errors is 

ctively researched but not in the scope of this publication. 

In the experimental case study, multiple objectives of the new 

cores happen to be in conflict due to imperfections in the model 

nd data. For a new optimum to be added to the Pareto front, at 

east one parameter and at least one metric need to differ from 
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Table 7 

Two component gradient elution experiment with fractionation. Synthetic ground truth, parameter bounds, estimated parameters and 

performance indicators. 

Ground Truth Bounds GA Gradient 

Lower Upper S ∗
Peak 

S SSD S ∗
Peak 

S SSD 

˜ k a, 1 2.00 1.0e-02 1.0e + 02 2.00 2.00 1.80 2.00 
˜ k d, 1 10.0 – – 10.0 10.0 8.80 10.0 
˜ k eq, 1 0.20 1.0e-02 1.0e + 02 0.20 0.20 0.20 0.20 

ν1 7.00 1.00 50.0 7.00 7.00 7.00 7.00 

σ1 50.0 1.00 100 50.0 50.0 50.0 50.0 
˜ k a, 2 2.00 1.0e-02 1.0e + 02 2.00 2.00 2.40 2.00 
˜ k d, 2 10.0 – – 10.0 10.0 12.0 10.0 
˜ k eq, 2 0.20 1.0e-02 1.0e + 02 0.20 0.20 0.20 0.20 

ν2 5.00 1.00 50.0 5.00 5.00 5.00 5.00 

σ2 50.0 1.00 100 50.0 50.0 49.8 50.0 

NRMSD 4.2e-06 4.2e-06 8.7e-04 4.2e-06 

S̄ 4.5e-05 4.5e-05 4.6e-04 4.5e-05 

Wall Time 2 days: 9:38:44 2 days: 3:40:50 4 days: 15:23:18 5 days: 2:19:39 

Table 8 

Fixed parameters for experimental case study. 

Parameter Value Unit 

Q 8.33e-08 m 

3 /s 

A c 2.01e-04 m 

2 

L c 2.50e-01 m 

r p 4.50e-05 m 

L t 1.46e-01 m 

� 2.23e + 00 mol/ m 
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Table 9 

Dextran pulse experiment with detached column. Parameter bounds, estimated pa- 

rameters and performance indicators. 

Bounds GA Gradient 

Lower Upper S Front S SSD S Front S SSD 

A t 1.5e-05 2.5e-05 1.9e-05 1.9e-05 1.9e-05 1.9e-05 

D t 1.0e-09 1.0e-05 2.7e-06 2.4e-06 2.5e-06 2.4e-06 

NRMSD 3.8e-02 3.8e-02 3.8e-02 3.8e-02 

S̄ 4.6e-04 4.2e-04 4.1e-04 4.2e-04 

Wall Time 0:02:43 0:01:07 0:01:10 0:00:55 

Results 2 1 
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he existing optima by at least 1%. The mean of the involved met- 

ics, S̄ , is used to select the final result. The model parameters in 

able 8 are determined independently of the staged parameter es- 

imation procedure. Parameter transformations are applied analo- 

ously to the synthetic case study. Reference concentrations of the 

MA model are c s r = 225 mol/ m 

3 and c 
p 
r = 450 mol/ m 

3 . 

1.1. Dextran pulses with detached column 

A DPFR is used to describe the impact of the tubing and other 

oldup volumes that are external to the chromatography column. 

or this dataset, more complex models with multiple CSTR and 

PFR units were unable to better reproduce the observed behav- 

or but suffered from high parameter correlations and poor iden- 

ifiability (data not shown). Hence, the external holdup volumes 

re lumped, and the DPFR model parameters are not meant to re- 

ect the real dimensions of the tubing. It was further observed 

hat the given tubing length, L t , can be used for the DPFR with- 

ut deteriorating the match between model and data. In the first 

arameter estimation stage, the cross-section area, A t , and disper- 

ion, D t , of the DPFR are estimated from a dextran pulse experi- 

ent with detached column, i.e. with the column replaced by a 

ero-volume connector. The S F ront score accounts for the non-ideal 

ehavior of dextran tracer. The model is simultaneously fitted to 

wo experimental replicates by combining the scores as described 

n Section 9 . The time intervals J are separately determined for 

oth chromatograms. They range from 19 to 32 s for the first ex- 

eriment and from 15 to 32 s for the second (Fig. S9). As in the

ynthetic case study, the S SSD score is applied to the same time in- 

ervals for comparison. 

Results are shown in Table 7 and Fig. 9 . Obviously, the quality 

f this real-world data is much worse than in the synthetic case 

tudy. This is reflected in larger NRMSD values of about 4% of the 

ighest concentration in the selected time interval. Runtimes vary 

etween one and three minutes. The algorithm and score combina- 

ions reach the same NRMSD and terminate at the same estimated 

reas, A t , with two digits precision. The dispersion estimates de- 
15 
iate 8% or less from the mean of the compared values, with the 

argest deviation for S F ront with the GA. It is important to under- 

tand that these differences do not allow to assess the certainty 

f the estimates. Measurement errors clearly exist and are propa- 

ated to the estimated parameters. However, different methods are 

equired for quantifying their nature and impact. 

Interestingly, the GA has found conflicts between the metrics in 

he S F ront score, even though they are designed to be complemen- 

ary to each other. Two different parameter sets are optimal in the 

areto sense, i.e. one metric can only be improved at the cost of 

eteriorating another. In this example, multiple optima are likely 

aused by relatively large errors in the experimental data. How- 

ver, Pareto optima should always be carefully analyzed, as they 

ndicate inconsistencies in the data that would remain undetected 

ith the S SSD score. In Table 9 , the selection of a final result is 

ased on the mean, S̄ , of the involved metrics. The parameters, 

etrics and chromatograms of both Pareto optima are shown in 

able S5. The parameter estimates are identical within two digits 

recision, and differences in the corresponding chromatograms are 

ardly visible to the human eye without magnification. The mean 

f the metrics is ca. 3x smaller for the selected optimum, while the 

RMSD ca. 8 times larger. However, the NRMSD can be misleading 

s exemplified in Section 7.1 . 

1.2. Dextran pulses with attached column 

In the second stage, column porosity, ε c , and column dispersion, 

 ax , are estimated from a dextran pulse experiment with attached 

olumn. The model is fitted to two experimental replicates follow- 

ng the same procedure as above. The time intervals range from 

2 to 218 s for the first experiment and from 24 to 218 s for the

econd (Fig. S10). Results are shown in Table 10 and Fig. 10 . The

RMSD is similar and well below 1% for all algorithm and score 

ombinations. Runtimes vary between about two and nine minutes 

ith an advantage for the GA. The NRMSD values are slightly bet- 
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Fig. 9. Two replicates of dextran pulse experiment with detached column. Experimental data and estimated chromatograms. 

Fig. 10. Two replicates of dextran pulse experiment with attached column. Experimental data and estimated chromatograms. 

Table 10 

Dextran pulse experiment with attached column. Parameter bounds, estimated pa- 

rameters and performance indicators. 

Bounds GA Gradient 

Lower Upper S Front S SSD S Front S SSD 

ε c 2.0e-01 4.0e-01 3.3e-01 3.4e-01 3.3e-01 3.3e-01 

D c 1.0e-12 1.0e-05 3.2e-07 3.8e-07 3.4e-07 3.4e-07 

NRMSD 7.0e-03 7.0e-03 6.6e-03 6.6e-03 

S̄ 1.6e-03 1.6e-03 1.4e-03 1.5e-03 

Wall Time 0:04:29 0:01:46 0:06:02 0:08:34 
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Table 11 

Protein pulse experiment under non-binding conditions. Parameter bounds, esti- 

mated parameters and performance indicators. 

Bounds GA Gradient 

Lower Upper S Peak S SSD S Peak S SSD 

ε p 2.0e-01 5.0e-01 3.3e-01 3.3e-01 3.3e-01 3.3e-01 

k f 1.0e-12 1.0e-05 2.6e-06 1.3e-06 2.0e-06 1.3e-06 

D p 1.0e-12 1.0e-05 2.2e-11 3.1e-11 2.5e-11 3.0e-11 

NRMSD 2.1e-02 1.9e-02 2.1e-02 1.9e-02 

S̄ 1.1e-02 1.6e-02 1.1e-02 1.5e-02 

Wall Time 0:21:16 0:06:16 0:16:02 0:14:08 

Results 4 2 

e

o

1

p
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e
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a

er for gradient search with both scores. The porosity estimates are 

lmost identical, while the Dispersion estimates deviate 10% or less 

rom the mean of the compared values, with larger deviations for 

he GA but in opposite directions for S F ront and S SSD . Fig. 10 shows 

 systematic mismatch between the slopes of model and data to- 

ards the right end of the considered time intervals, i.e., the mech- 

nistic model does not fully capture the observed process. This is 

urrently analyzed in detail. Uncertainty analysis and model exten- 

ions will be subject of separate publications. 

For this data set, gradient search has found two Pareto optima 

or S F ront with details shown in Table S6 and Fig. S11. Here, NRMSD 

nd S̄ agree on the best choice. Note that the applied multi-start 

trategy for gradient search is not specifically designed for finding 

areto optima, as the metrics are combined into one objective for 

ach optimizer run. However, Pareto optima can be found as a side 
16 
ffect when the results of several runs are compared at the level 

f individual metrics. 

1.3. Non-Binding protein pulses 

In the third stage, particle porosity, ε p , film diffusion, k f , and 

ore diffusion, D p , are estimated from a protein pulse under non- 

inding conditions, i.e. high salt. Using the target protein instead 

f salt as non-binding but pore penetrating tracer is more reliable, 

s salt diffuses faster and has a better pore accessibility. Parameter 

stimation results are shown in Table 11 and Fig. 11 . Runtimes are 

etween six and 22 min for GA and are about 15 min for gradient 

earch. The NRMSD is very similar for the compared methods. The 

tted chromatograms are also similar with the largest variations 

round the peak maximum. The porosity estimates are identical. 
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Fig. 11. Two replicates of protein pulse experiment under non-binding conditions. Experimental data and estimated chromatograms. 
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The estimates for particle porosity and pore diffusion show rel- 

tively large differences between the scores, partly above 100%, 

hile similar results are obtained by both algorithms. Moreover, 

oth algorithms found multiple Pareto optima for the S Peak score. 

able S7 shows the Pareto optima found with GA and S Peak . They 

iffer by more than 100% in some parameters, and the lowest 

ean is in conflict with the lowest NRMSD. Table S8 shows the 

areto optima found with gradient search and S Peak . They are closer 

o each other, and the lowest mean is not in conflict with the low- 

st NRMSD. Fig. S12 compares the simulated chromatograms of the 

our Pareto optima of GA and S Peak and the single optimum of gra- 

ient search and S SSD , which is the standard method for param- 

ter estimation in chromatography. One Pareto optimum matches 

he peak position in one experiment better and one Pareto opti- 

um matches the peak position in the other experiment better, 

hile the other two Pareto optima have time offsets but describe 

he peak shape in both experiments better. This inherent conflict 

s caused by a 0.4 second signal offset between the two experi- 

ents which is likely caused by slightly different pump delays in 

ach experiment. As introduced and comprehensively discussed in 

ection 7 , the S SSD cannot handle such inconsistencies in the data, 

hich was a major motivation for designing the new score sys- 

em. In Table S7, the Pareto optimum with the lowest NRMSD has 

he largest mean, S̄ . This Pareto optimum is very similar to single 

ptima found by both algorithms with S SSD . Hence, the results of 

he new score system include the result of the standard method, 

ut the standard method is not able to reveal deficiencies in the 

odel or data. Even when the final optimum is automatically se- 

ected, the existence of several Pareto optima indicates potential is- 

ues and should generally trigger manual inspection of the model 

nd data. Alternatively, a probability distribution could be passed 

o the following stage. This is not in the scope of this publication, 

ut future work will address uncertainty propagation in the con- 

ext of Bayesian optimization. 

1.4. Gradient elution with partial fractionation 

In the fourth and last stage, the parameters of a two compo- 

ent SMA model are estimated from two gradient elution experi- 

ents with different loading times and gradient slopes. One exper- 

ment has fractionation data available (Fig. S14) while the second 

eatures an extended loading time (Fig. S15). Experimental details 

re described in Section 5 . Each fraction is 96 s in length. Precise

ollection times and pool concentrations are shown in Table S9. 

he scaled adsorption rates, ˜ k ′ a , the scaled equilibrium constant, 
17 
˜ 
 

′ 
eq , characteristic charge, ν , and shielding coefficient, σ , are esti- 

ated. The adsorption and desorption rates, ˜ k a and 

˜ k d , are deter- 

ined from the parameter transformation in Eqs. (26) , (27) . The 

onic capacity, �, was separately determined by titration. The pa- 

ameters are estimated using the S ∗
Peak 

score on the sum chro- 

atogram and the S ∗
Gauss 

score on the fractionation data. S ∗
Peak 

with 

ix metrics on three peaks and S ∗Gauss with three metrics on two 

eaks and two components results in 1 · 3 · 6 + 2 · 2 · 3 = 30 objec-

ives. The S SSD score is applied to the sum chromatogram and to 

he fractionation data of each component. 

Results are shown in Table 12 and Fig. 12 . The compute times 

f the different algorithm and score combinations range from ca. 

 to 18 days. The GA appears slower than gradient search, but the 

eported GA runtimes include local refinement by gradient search. 

or the S ∗
Peak ∪ 

S ∗
Gauss 

score, 3 days of GA runtime were followed by 

 days of local refinement, and for the S SSD score, 5 h of GA run- 

ime were followed by 17 days of local refinement. In both cases, 

ocal refinement hardly improved the final result, and the same has 

een observed in previous stages. With synthetic data local refine- 

ent can improve the solution up to the limits of numerical preci- 

ion due to the model being able to perfectly explain the synthetic 

ata. With experimental data the model can’t perfectly explain the 

ata and many small steps are taken to make marginal improve- 

ents to the results. The GA can quickly get close enough to an 

ptimal solution that local refinement is left with making small re- 

nements to match an imperfect model to imperfect data. In con- 

lusion, the total runtime can be substantially reduced by skipping 

he local refinement. 

The algorithm and score combinations differ not only in their 

untimes but also in the achieved parameter estimates. The 

RMSD is relatively low for all algorithm and score combinations. 

ven though it is slightly smaller for S SSD than for S ∗
Peak ∪ 

S ∗
Gauss 

, for 

oth algorithms, some alarming issues are observed for S SSD . For 

A, the characteristic charge of the second component, ν2 , is at 

he lower bound, and for gradient search, the shielding factor of 

he second component, σ2 , is at the upper bound. These values in- 

icate unrealistic parameter values, as wide search intervals were 

hosen around typically observed values for monoclonal antibod- 

es. Despite the similar NRMSD, the scaled adsorption constants of 

he first component, ˜ k a, 1 , differ by more than 5 orders of magni- 

ude between the search algorithms, and the same is true for the 

caled equilibrium constant of the second component, ˜ k eq, 2 . This 

ndicates poor identifiability of the estimated parameters with the 

 SSD score. Moreover, the corresponding chromatograms do not at 
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Table 12 

Gradient elution experiment with partial fractionation. Parameter bounds, estimated parameters and performance indi- 

cators. 

Bounds GA Gradient 

Lower Upper S ∗
Peak ∪ S ∗Gauss S SSD S ∗

Peak ∪ S ∗Gauss S SSD 

˜ k a, 1 1.0e-06 1.0e + 06 5.1e + 00 9.8e + 06 1.2e + 01 7.1e-01 
˜ k d, 1 – – 3.4e + 04 7.6e + 08 2.3e + 05 1.7e + 01 
˜ k eq, 1 1.0e-06 1.0e + 06 1.5e-04 1.3e-02 5.4e-05 4.1e-02 

ν1 1.0e + 00 2.0e + 02 1.5e + 01 8.2e + 00 1.7e + 01 6.7e + 00 

σ1 1.0e + 00 2.0e + 02 5.0e + 01 4.4e + 01 5.1e + 01 4.1e + 01 
˜ k a, 2 1.0e-06 1.0e + 06 7.4e-03 1.5e + 04 8.9e-03 1.0e + 06 
˜ k d, 2 – – 2.6e + 03 1.6e + 03 1.0e + 03 1.0e + 12 
˜ k eq, 2 1.0e-06 1.0e + 06 2.9e-06 9.6e + 00 8.7e-06 1.0e-06 

ν2 1.0e + 00 2.0e + 02 2.3e + 01 1.0e + 00 2.1e + 01 2.1e + 01 

σ2 1.0e + 00 2.0e + 02 9.5e + 01 1.0e + 02 3.9e + 01 2.0e + 02 

NRMSD 3.9e-01 3.7e-01 3.9e-01 3.4e-01 

S̄ 9.0e-02 1.9e-01 9.1e-02 1.0e + 00 

Wall Time 8 days 1:33:00 17 days 9:42:53 0 days 19:14:13 6 days 12:06:01 

Results 13 3 

Fig. 12. Gradient elution experiment with different loading times and gradient slopes. Experimental data and estimated chromatograms. Sum signal of first experiment (top 

left) and second experiment (top right). Fractionation data of component 1 (bottom left) and component 2 (bottom right) in first experiment. 
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ll match the fractionation data of the second component, as can 

e seen in Fig. 12 . 

In stark contrast, the S ∗
Peak ∪ 

S ∗
Gauss 

score was able to guide both 

earch algorithms towards satisfying matches between simulation 

nd experiment for all peaks of both components in both experi- 

ents. The corresponding parameter estimates of both search al- 

orithms are relatively similar. Again, rigorous uncertainty analy- 

is is not in the scope of this publication. Moreover, the GA with 

 

∗
Peak ∪ 

S ∗
Gauss 

result even features an initial breakthrough peak in 
18 
he first experiment, which is tiny but important, as it indicates 

aturation of the column. 

For the S ∗
Peak 

⋃ 

S ∗
Gauss 

score, 13 Pareto optima were found by 

he GA, Table S10, and three by gradient search, Table S11. For 

oth search algorithms, the NRMSD of the Pareto optima are in 

onflict with the respective mean, S̄ . The GA results are compared 

n Fig. S13. All Pareto optima, except one, match all peaks of both 

omponents in both experiments. These twelve Pareto optima in- 

icate a tradeoff between the two experiments. However, none of 
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hem perfectly matches one experiment or the other. This indicates 

hat the mechanistic model does not fully capture all features of 

he process. The observed deviations are likely caused by a com- 

ination of non-ideal hydrodynamics, complex binding processes 

nd experimental errors. Fig. S13 provides rich information on the 

areto optima that can be related to expert knowledge for select- 

ng the most suitable parameters for specific applications of the 

alibrated model. Specific applications of the model described here 

an entail process robustness investigation. Simulations of scenar- 

os with varying process input parameters that are known to vary 

etween lots, such as total protein concentration in the feed solu- 

ion or ionic strength of elution buffers, can inform decision mak- 

ng in case of process performance deviations. Further applications 

an range from screening process parameters, such as stop col- 

ect criteria, to inform process optimization experiments, to risk- 

nalyses for technical transfer activities. 

2. Conclusions 

A novel score system for estimating chromatography model pa- 

ameters has been introduced and demonstrated using both syn- 

hetic as well as experimental case studies. In contrast to least 

quares estimation, which is the de facto standard approach and 

ostly combined with single-objective gradient search, the new 

core system provides multiple objectives (metrics) that are si- 

ultaneously optimized. Typical objectives are the shape, position 

nd height of individual peaks. Even when these objectives are 

ot in conflict, which is typically the case for synthetic data, they 

an help to improve convergence of the search algorithm, partic- 

larly for poor start values and in initial phases of the optimiza- 

ion, by allowing progress in one objective while sacrificing an- 

ther. However, multiple Pareto optima are often found for exper- 

mental data, indicating deficiencies in the model or data. For ex- 

mple, peaks might be slightly shifted by pump delays or small 

hanges in the elution buffer that are unknown and hence not cov- 

red by the chromatography model. Least squares penalize position 

ffsets much stronger than peak shape variations and would con- 

equently lead to large errors in the estimated parameters of the 

inding model. The proposed new score system is designed to han- 

le such situations better by allowing tradeoffs between conflicting 

bjectives. It has been found that the mean of involved metrics 

rovides a better measure for the quality of the match between 

imulation and experiment than the least squares residual. At first, 

he diversity and uncertainty that is introduced by multiple Pareto 

ptima might appear as a shortcoming in comparison to the sim- 

licity of the standard approach. However, this uncertainty is not 

reated but only revealed by the presented parameter estimation 

pproach. The ground truth is not changed but made accessible 

o proper analysis and visualization. However, this cannot replace 

 rigorous analysis of error sources and uncertainty propagation, 

hich will be subject of another publication. Multiple pareto op- 

ima can also be post-processed by weighting different metrics or 

xperiments to select an optimum appropriate to the problem at 

and. The advantage of handling this in post-processing is that it 

oes not require a priori selection of weights and it does not neg- 

tively impact the parameter estimation process. 

Another advantage of the new score system is that multiple ex- 

eriments and fractionation data can be integrated without need- 

ng to weight different objectives. The objectives can be combined 

nto one for a gradient search algorithm, but a multi-objective GA 

as been observed to be much more robust for complex prob- 

ems. Pareto optima can indicate inconsistencies between multi- 

le experiments, and the Pareto front carries rich information on 

otential causes of failure, as demonstrated in the experimental 

ase study. This information is important for understanding the 

ystem and designing better experiments. The genetic algorithm as 
19 
ell as the multi-start strategy for gradient search are parallelized 

ith progress monitoring for computational efficiency on compute 

lusters but also on multi-core processors in personal computers. 

ue to the modular nature of the new score system, new met- 

ics can be merged into the existing framework without changing 

he search algorithm. This can be particularly useful for real-world 

nd large-scale industrial data where increasing system complex- 

ty might require consideration of additional features. The current 

etrics have already been shown to properly address non-ideal 

racer retention and pump delays. 

CADET-Match has been designed as a monolithic approach for 

ully automated data processing with minimal human intervention. 

ence, pragmatic choices were made for some meta-parameters 

uch as approximation order in the smoothing procedure, concen- 

ration thresholds for time interval selection or solver tolerances 

n the chromatography simulation. Countless numerical tests were 

erformed, and much care has been taken to ensure robustness of 

he presented algorithm on real-life industrial data. Even though 

he meta-parameters can be changed, due to the open source na- 

ure of the code, this is not recommended unless the implications 

re fully understood. The open code provides full transparency of 

he applied procedures and allows to adapt and integrate the soft- 

are in operational workflows. CADET-Match can be used with all 

odel variants that are available in the parent project, CADET, and 

over a wide range of transport and binding models. The scripts for 

unning all case studies in this publication are freely available and 

an easily be adjusted to other scenarios. Moreover, some aspects 

nd code parts of the presented work are not even specific to chro- 

atography or parameter estimation. For example, the smooth- 

ng procedure was recently applied to radioactive tracer signals in 

lant science. 
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