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Abstract
We recast the Zwanzig’s derivation of a nonlinear generalized Langevin equation (GLE) for a heavy
particle interactingwith a heat bath in amore general framework.We show that it is necessary to
readjust the Zwanzig’s definitions of the kernelmatrix and noise vector in theGLE in order to recover
the correct definition offluctuation-dissipation theorem and to be able performing consistently the
continuum limit. As shown byZwanzig, the nonlinear feature of the resultingGLE is due to the
nonlinear dependence of the equilibriummap by the heavy particle variables. Such an equilibrium
map represents the global equilibrium configuration of the heat bath particles for a fixed
(instantaneous) configuration of the system. Following the same derivation of theGLE,we show that a
deeper investigation of the equilibriummap, considered in the Zwanzig’sHamiltonian, is necessary.
Moreover, we discuss how to get an equilibriummap given a general interaction potential. Finally, we
provide a renormalization procedure which allows to divide the dependence of the equilibriummap
by coupling coefficient from the dependence by the system variables yielding amore rigorous
mathematical structure of the nonlinear GLE.

1. Introduction

1.1. State-of-art
The generalized Langevin equation (GLE) is an importantmathematical tool for investigating awide class of
both quantumand classical diffusive phenomena [1] and it is an extension of the Langevin equation [2]. The
major advantage ofGLE-based approaches is the reduction of the number of degrees of freedomwhich describe
the system-environment interactions. For example, in case of a particlemoving in a given environment, instead
of solving theNewton’s equations ofmotions for the system and for each particles of the environment, one can
just focus on the velocity vector,U, of the diffusing particle, that is, theGLE reads:

dU

dt
t t U d F t , 1

t

0
( ) ( ) ( ) ( ) ( )ò g t t t= - - +

where γ(t− τ) is the friction function and, finally, F(t) is a zeromean, stochastic, Gaussian colored noise and
they are related through the fluctuation-dissipation relation (FDR) [3]:

F t F k T t , 2B( ) ( ) ( ) ( )t g tá ñ = -

where kB is the Boltzmann constant andT the temperature. Despite the drastic reduction of the degrees of
freedom, theGLE has shown to provide a reliable description of the physical diffusive processes. In fact, it has
been employed inmany fields of research, for instance, in Biophysics, for studying anomalous diffusion of
proteins in lipidmembrane [4–7], inHydrodynamics, for studying howprobe particles diffuse in viscoelastic
materials [8–12], inQuantumMechanics, for explaining the dissipation in quantum systemon amore
fundamental and general level [13–17] as well as in case of specific system such as theCaldeira-Leggettmodel
[18, 19] and, inChemistry, as a diffusionmodel for the chemical reactions [20, 21]. Nevertheless, the accuracy of
the physical description provided by theGLE strictly depends on howonemodels the parameters and the time-
dependence of the friction function. Its parametrization, in fact, is an open field of researchwhich involves both
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mathematical and physical studies [22–28]which provide numerically or analytically the correct description of
the kernel function depending on physical system that one considers.

By definition, the diffusion is a dynamical process at non-equilibrium since the energy is not constant in time
but it varies over time due to the interactionwith the environment, thereby, it cannot be described through the
Hamiltonian formalism. In fact, it is not possible to obtain a (generalized) Langevin equation from the
Hamilton’s equations to anyHamiltonianwhen the time dependence is not explicit. However, if one introduces
a furtherHamiltonian containing all themicroscopic details of the environment explicating the interactions
with the system, the energy of both the system and the environment can vary but their sumwill be unchanged.
Thefirst attempts to derive aGLE adopting this approach have been done byMori [29] and Ford et al [30] in the
context of linear system-environment interactions and, then, by Zwanzig [31] extending the previousworks to
the case of non-linear interactions.

The nonlinear GLE obtained by Zwanzig in [31] is derived from aHamiltonian functionwhere the particles
composing the environment oscillate harmonically around their global equilibrium configuration, denotedwith
themap a, which depends on the instantaneous system configuration. The equilibriummap, a, plays a
fundamental role in the derivation since it contains the information about the coupling between the system and
the environment and the (non) linearity feature of theGLE is determined by the (non) linear dependence of this
map by the system variable.

As shown by Zwanzig [31] through a purely theoretical derivation, even in presence of a non-linear coupling,
one can still provide amathematical definition for the friction and noise terms and, thereby, the fluctuation-
dissipation theorem [32] can be formulated. Unfortunately, as wewill show in the upcoming section, by strictly
applying the theoretical definitions derived in [31], one notices that the friction function is ill-defined since it
does not contain the information about the coupling and this leads to obtain a tautology on the FDR and to an
unbounded friction function in the continuum limit [31].

Thefirst aimof this paper is to formalize and adapt the Zwanzig’s derivation in order to provide a preciser
definition of kernel and noise termswhich is consistent with the continuum limit. The second aim is to
underline the importance of the equilibriummap in the context of theGLE and to study itsmathematical
properties.

1.2. Introduction to the problem
In this section, we revisit and formalize the theoretical derivation of aGLE introduced by Zwanzig [31]putting in
evidencewhat are themain inconsistencies and giving an insight about how to overcome them.

The physical system that Zwanzig considered is composed by a subsystem that we call heavy particle
described by the variableX≔ (Q,P)whereQ is the generalized coordinate and P the conjugatedmomentum and
a heat bathwhich is a set ofN particles whose state is described by the collective variablesY≔ (q, p)with the same
meaning as before.

ThewholeHamiltonian of this system is given by Zwanzig is [31]

H X Y H X Y a X K Y a X,
1

2
, 3s

T( ) ( ) [ ( )] [ ( )] ( )= + - -

where the second term represents the interactionHamiltonian since it involves the variables of both heavy
particle and heat bath through the a(X) vector. In fact, in order to switch off the interactions, we have to impose
somehow a(X)= 0 for eachX≠ 0. Finally, thematrixK is a symmetric constantmatrix.

The equation ofmotion for the heat bath and heavy particle variables are, respectively:

dY

dt
t BK Y t a X t

dX

dt
t V X t A W X t K Y t a X t

,

4

( ) [ ( ) ( ( ))]

( ) ( ( )) ( ( )) [ ( ) ( ( ))] ( )

= -

= - -

whereA andB are two constant antisymmetricmatrix, i.e.:

A B
0 1

1 0
,

0 1
1 0

,
h p

h p

h b

h b

.

.

.

.
⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

=
-

=
-

such that the ranks ofA andB are, in general, different andwhereW(x)=∇Xa
T(X),V(X)= A∇XHs(X).

The heat-bath equation in (4) can be formally solved andwe have:

Y t a X t BK t Y a X BK
d

d
a X t dexp 0 0 exp . 5

t

0
( ) ( ( )) ( )[ ( ) ( ( ))] ( ) ( ( )) ( )ò t

t
t t- = - + -

2
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The time-derivative of the a(X) vector can be rewritten in terms of theWmatrix, i.e.

d

d
a X t W X t X t . 6T( ( )) ( ( )) ( ) ( )

t
t t t- = - - -

By replacing equation (5) into the first equation in (4) and bymaking use of equation (6), one gets

dX

dt
t V X t A W X t K BK W X t X t d

A W X t K BK t Y a X

exp

exp 0 0 . 7

t
T

0
( ) ( ( )) ( ( )) ( ) ( ( )) ( )

( ( )) ( )[ ( ) ( ( ))] ( )
ò t t t t= + - -

- -

At this point, Zwanzig defined the noise vector

F t K BK t Y a Xexp 0 0 , 8( ) ( )[ ( ) ( ( ))] ( )= - -

and the kernelmatrix

L t K BK texp , 9( ) ( ) ( )=

and, introducing the canonical partition function

p q Q H p q Q, exp , , , 10b( ∣ ) ≔ ( ( )) ( )r b-

he formulates thefluctuation-dissipation relation (FDR)

F t F k T t , 11B( ) · ( ) ( ) ( )t z tá ñ = -r

where kB andT, respectively, are the Boltzmann constant and the temperature whereas Tr L≔ [ ]z andTr
denotes the trace of amatrix.

1.2.1. Criticism
Wenow explain ourmain criticism to the Zwanzig’s derivation showing that the definitions (8) and (9) provided
byZwanzig yield a FDRwhich is inconsistent with the standard definition [3]. Themain reason of this
inconsistency can be better explained bymeans of the following argument. Inwriting theHamiltonian for two
interacting systems, all the information about the nature of the interaction is contained in the potential function
which gives a fullymicroscopic and detailed description of system.Conversely, in the (generalized) Langevin
equation, one just takes into account a coarse-grained representation of these interactions encoded into two
terms: the stochastic noise vector and the frictionmatrix or function. The role of the FDR is somehow to balance
the energy dissipated by the frictionwith that supplied by the randomnoise. Consequently, the friction and
noise termhave to contain the information about the strength of the interactions. For example, in the easiest case
of a standard Langevin equation (LE), i.e., U t U t F t( ) ( ) ( )g= - + , the second termon the right-hand side can
be interpreted as a convolution between a kernel function ζ(t− τ)∼ γδ(t− τ) (δ is theDirac delta distribution)
and the velocity vector of the heavy particle,U(t). In this case, it is also evident that the strength of the interaction
is represented by the friction constant γwhich is a coarse-grained description of the heavy particle-environment
interactions. This featuremust hold also in case of aGLE, that is, we expect that, in the Zwanzig’s derivation, all
themicroscopic information contained in the potential function are condensedwithin the frictionmatrix L.

By inspection, we immediately realize that L and F, respectively, in equation (8) and (9) do not show this
feature. In fact, (up to two constants kB andT) L depends onB andK. Now,B is a constant antisymmetricmatrix
whereasK is thematrix associated to the oscillation frequencies of the heat bath particles when they do not
interact with the heavy one1.

Therefore, the FDR formulated byZwanzig in (11) does not provide any balance.
Based on this observation, we now explicitly show that, introducing the sameHamiltonian considered by

Zwanzig, that is: [31]

H
P

V Q
p

q Q
2 2 2

, 12
j

N
j j

j
j

j

2

1

2

2

2
⎡

⎣
⎢
⎢

⎛

⎝
⎜

⎞

⎠
⎟

⎤

⎦
⎥
⎥

( ) ( )å
w g

w
= + + + -

=

wherewe recall that capital letters represent the heavy particle variables.
By comparing (12) and (3), we note that the first two terms in theHamiltonian above correspond toHs(X)

whereas the terms in the square brackets correspond toHb(X,Y). Therefore, theHamiltonian (12) can be
deduced from that in equation (3)making explicit in the latter the position andmomentumvariables, i.e.:

1
We can convince about it just observing theHamiltonianHb(X,Y) in equation (3). By switching the heat bath-heavy particles interactions

offmeans that a(X) = 0 for anyX ≠ 0 and this leads toHb(X,Y) = Hs(X) + YTKY/2. This is theHamiltonian of two non-interacting
subsystemswhere the latter is nothing but a set of (non-interacting) harmonic oscillators.

3
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H P p Q q H P Q p a P Q K p a P Q

q a P Q K q a P Q

p a P Q K q a P Q

, , , ,
1

2
, ,

1

2
, ,

, , . 13

s p
T

pp p

q
T

qq q

p
T

pq q

( ) ( ) [ ( )] [ ( )]

[ ( )] [ ( )]

[ ( )] [ ( )] ( )

= + - -

+ - -

+ - -

Now, by imposingKpp= 1 and ap(P,Q)= 0,Kpq= Kqp= 0 and setting K diag , , ,qq N1
2

2
2 2≔ { }w w w¼ and

a P Q a Q Q,q
i

q
i i

i
2( ) ( )º = g

w
, equation (13) reduces to (12).Wenote that i

2{ }w is the set of free oscillation frequencies

of the heat bath particles whereas i i
N

1{ }g = is the set of coupling coefficients which determine the strength of the
heat bath-heavy particle interactions. Thus, a specific interaction can be switched off just imposing γi→ 0which
implies a Q 0q

i ( ) = .
By specializing definitions (8) and (9) to this example, a cumbersome but straightforward calculation leads to

the noise term

F t K K t K K t pcos sin , 14q qq qq qq qq
1 2 1 2 1 2( ) ( ) ( ) ( )= - +

whereas for the kernelmatrix, we have

L t K K tcos . 15qq qq qq
1 2( ) ( ) ( )=

As already stressed, the frictionmatrix (15) does not depend on the coupling coefficients, γi and, thereby, the
FDR is ill-defined aswewill see in amoment. In fact, by plugging equations (14) and (15) into the definition (11)
for the FDR, one gets:

F t F k T Tr K K t k T Tr L t k T tcos cos . 16q q B qq qq B qq B
i

N

i i
1 2

1

2( ) · ( ) [ ( ( ))] [ ( )] ( ( )) ( )åt t t w w tá ñ = - º - = -
=

It is evident that the friction function on the last right-hand side, that is:

t tcos , 17
i

N

i i
1

2( ) ≔ ( ( )) ( )åx t w w t- -
=

just depends on the oscillation frequencies i i
N

1{ }w = , therefore, the obtained FDR (16)does not recover the usual
definition.

Finally, we stress that, adopting the same example, Zwanzig writes a different friction function (which is also
the correct one) and it reads (see equation (23) in [31]):

t tcos . 18Z
i

N

i
1

2
i

i
( )( ) ( ( )) ( )åz t w t- = -g
w

=

This suggests that hemaybe absorbed, ad hoc, the γi-coefficients within ζ.
Based on that, we conclude that the definition (18) should be adjusted in order to obtain the correct ζ

functionwithout any ad hoc-adjustment and this is the principal aim of the paper.

1.3. Notation
In this section, we formalize the derivation introduced in the previous section.

We consider aHamiltonian function describing a classical physical system composed by a heat bath (P)
interactingwith a heavy particle (B). The heat bath consists ofN particles withmassm= 1 smaller than the
heavier particlemassM.

We assume that the system is embedded in the three dimensional physical space 3 so that the phase space,
denoted byΓ, is a subset of N N3 3 3 3   ´ ´ ´ . Therefore, the heat bath conjugated coordinates are:

e eI p Q q x y z, , , , , 19
i

N

i i
N

i

N

i i
N

1 1

≔ ≔ ( ) å å aÎ Î =a a a a

= =

wherewe have introduced the canonical base ei i
N

1{ }= of N . The heavy particleHamiltonian conjugated
coordinates are

X e P eX P, .
1

3
3

1

3
3≔ ≔ å åÎ Î

a

a
a

a

a
a

= =

The systemHamiltonian function, : ⟶ GH can be split into three terms:

P I X Q P X I Q Q XH H H, , , , , , ,INT( ) ≔ ( ) ( ) ( )+ +H B P

4
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where, as usual, we have:

 

   

P X
P

X

I Q
I p

H
M

V

H

,
2

,

,
2 2

, 20
i

N
i

2

2

1

2
N

3

3 3

( ) ( )

( ) ( )



 å

= +

= =
=

B

P

where the potential function V : 3  describes any external forcewhich just acts on the heavy particle and it
could have a generic dependence onX.

The interaction term is given by:

Q X q a X K q a XH ,
1

2
, . 21INT

i j

N

i i ij j j
, 1

3( ) ≔ ( ) ( ( )) ( )å á - - ñ
=

Thus, the interactions are described by the so-called interactionmatrixwhich is a linear application
K : N N3 3  acting on the heat bath degrees of freedom.Note that eachKij is a three dimensionalmatrix since
also the spatial degrees of freedomare included.

Themeaning of the interaction described byHINT is to assume a harmonic approximation around the
equilibriumpositionsQ*≔ a(X) of the heat bath system, where a: N3 3  provides the equilibrium
configuration of all the heat bath particles for a given X 3Î .

The systemofHamilton’s equations, then, reads:







X
P

P a X K Q a X X

Q I

I K Q a X

t
t

M
t t t t V t

t t

t t t

,

,

,

, 22

X Xt
T

t

( ) ( )

( ) ( ( )) ( ( ) ( ( ))) ( ( ))
( ) ( )
( ) ( ( ) ( ( ))) ( )

( ) ( )

=

=  - - 

=
=- -

where a:X t
N3 3 3

( )     ´ and the superscript T denotes the transpose operation.
The systemof equations above can be reduced to aGLE for the systemposition vectorX(t). To do so, onefirst

focuses on the heat bath equations (the last two equations) and, by just having a linear dependence on theQ-
coordinates, one interprets the factorKa(X) as an external force.Hence, one exploits the Laplace transform
method to obtain a formal solutionQS(t) for the heat bath position vector. Actually, theHamiltonian (21)
presents a translational invariance since it only depends onQ− a(X). This feature reflects on the formal heat
bath solution and, aswewill see later, we obtain an explicitmathematical expression of the heat bath solution
directly in terms ofQS(t)− a(X(t)). Then, the solution can be plugged into the equation ofmotion of the heavy
particle and the resulting equation explicitly takes the formof aGLE.

Wewill explicitly employ such a procedure in the next section after having studiedmore deeply the
properties of the equilibriummap a(X)which plays a fundamental role in the definition of the kernelmatrix and
noise vector.

We conclude this section,mentioning that the procedure above described, called elimination of the heat
bath degrees of freedom, has been already introduced byKac et al [30]first and by Zwanzig [31] later. However,
Kac et al just considered linear system-heat bath interactions that, in our notation, translates in defining the a
map to be ai(X)≔ X and absorbing all the parameters representing the interaction strengthwithin theKmatrix.

Zwanzig extended their system assuming a generic dependency of the amapon the heavy particle position
vectorX and since it could be nonlinear, the elimination procedure led to a nonlinear GLE.

2. Formal derivation of a nonlinearGLE

In this section, inspired by thework of Zwanzig, wewill derive a nonlinear GLE and define the kernelmatrix and
noise term in such away to be able (i) to recover the standard definition of FDR, (ii) to define a continuum limit
without any ulterior adjustments.

In the section 2.1, we show that, by choosing a suitable potential function, one can always recast the starting
Hamiltonian into anHamiltonian of the same form given in equation (3). In section 2.2, we show that, an
appropriatemanipulation of the equilibriummap allows to naturally define the correct kernelmatrix and noise
vector.

2.1. General setting: study of the equilibriummap
Let usfirst clarify the role and the physicalmeaning of themap a :i 3 3  .

5
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First of all, we note that each element of the set a Xi i
N

1{ ( )}= plays the role of an equilibrium configuration of
the respective heat bath particle for anyfixed X 3Î . In fact, one can demonstrate [33] that such equilibrium
map can be always derived once that a generic interaction potential is given.

In practice, given anyHamiltonian function of the form

P I X Q P X I Q Q XH H, , , , , , ,( ) ≔ ( ) ( ) ( )+ +H VB P

where P XH ,( )B and I QH ,( )P are given in (20) and Q X,( )V is a rather generic interaction term, one can
define the global equilibriummap a(X)≔ {a1(X),L ,aN(X)}, imposing that any component of thismap realizes
the following requirement

Q X 0, , 23q q a Xi i i( )∣ ( )( ) ==V

wherewe remind thatQ= {q1,K,qN}.
In other words, equation (23) provides an implicit relation between a andX. Therefore, the Taylor

expansion (harmonic approximation) of the potential with respect to the equilibriummap a reads:

Q X a X X

q a X K q a X

, ,

1

2
, , 24

i j

N

i i ij j j
, 1

3

( ) ( ( ) )

( ) ( ( )) ( )å

»

+ á - - ñ
=

V V

where K Q X,q q Q a Xij i j
≔ ( )∣ ( )  =V is, by construction, a constantmatrix (in q)which just contains the

oscillation frequencies around the equilibriumpositions associated to each heat bath particle. Thefirst term in
the expansion (24) could, in general, depends onX and affects the equations ofmotion, however, if the
dependence of the potential function,V, on theX- and q-coordinates of the form ∥X− qi∥, such a factor isX
andQ-independent and hence it could be dropped aswewill notice in the next example. On the contrary, the
second one can be identifiedwith the interaction potential introduced in equation (21). Depending on the
mathematical structure of the initial potentialV, the resulting equilibriummap a(X) can depend onX in a
general fashion.

2.1.1. Examples of a possible equilibriummap.
Let us consider a Lennard-Jones-like interaction potential of the form

   
Q X

X q X q
, 4 , 25LJ

i

N

i
i

i i

i

i i1

12 6

⎜ ⎟ ⎜ ⎟
⎡

⎣
⎢

⎛

⎝

⎞

⎠

⎛

⎝

⎞

⎠

⎤

⎦
⎥( ) ≔ ( )å h

s s
-

-
-=  

V

where the parameters ,i i s h Î have the dimension of an energy and a length, respectively; lastly, i Î are
dimensionless parameters. Note that we do not consider anymutual interaction between the heat bath particles.
The requirement (23), namely:

*Q X 0, ,q LJi
( ) =V

where * * *Q q q, , N1{ }= is the equilibrium configuration of the heat bath, yields

 *X q i N2 , 1, .i i i
2 1 3 2 [ ]s- = " Î

This set of relations can be geometrically interpreted imaging that any particle, let us say, the i-th one, lies on a
point of the sphere R

2
i

 with radiusRi= 21/6σi. The reasonwhy any point on the sphere is equivalent to each
other is due to the fact we do not have anymutual interaction between the heat bath particles.

Therefore, every equilibriumposition vector *qi can be related to the heavy particle vectorX, introducing
any unit vector n(X) ( n X 13( )  = ) such that

*q
X

n X i N
2

, 1, .
i

i

i

i

1 6

≔ ( ) [ ]s
+ " Î

 

In general, it could depend onX, for example, such asn(X)= X/∥X∥. Thus, the equilibriummapmay read:

/

a X
X

n X i N
2

, 1, . 26i
i

i

i

1 6

( ) ≔ ( ) [ ] ( )s
+ " Î

 

In so doing, thefirst and second term in harmonic expansion (24) read

a X X

K a X XHess

, ,

,
2 36

11 , 27

JL
i

N

i

ii LJ ii
i i

i

1

2 3 2

2
3⎜ ⎟

⎛
⎝

⎞
⎠

( ( ) )

≔ [ ] ( ( ) ) ( )

å h

h
s

= -

=

=



V

V
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so that a X X,JL( ( ) )V can be dropped since constant and the potential function ca be approximated as follows

Q X q a X K q a X,
1

2
, . 28JL

i j

N

i i ij j j
, 1

3( ) ( ) ( ( )) ( )å» á - - ñ
=

V

Note that the factor in theKiimatrix of equation (27) has the physical dimension of a frequency, therefore, we
define a new set of frequencies

i N
2 36

, 1, , 29i
i i

i

2
2 3 2

2
≔ [ ] ( )w

h
s

" Î


which allows us to rewrite the initial set of parameters (ηi, òi,σi) in terms of a new one: (ωi, ηi, òi); in particular, the
equilibriummap ai in equation (26)now reads:

a X
X

n X i N12 , 1, . 30i
i

i

i

( ) ≔ ( ) [ ] ( )
h

w
+ " Î



Wenote that if X Î thenwe have n(X)= X/|X| and this implies that n X sgn X( ) ( )= . Therefore, during the
systemdynamics, that is, along the equation ofmotion, the functionX= X(t) gives rise to a discontinuous
equilibriummap since n X sgn X t( ) ( ( ))= can change sign discontinuously in time passing from+1 to−1 and
viceversa. Hence, the application to a one-dimensional case requires that the potential function is not of the
formV= V(|X− òiqi|).

By going back to the three-dimensional case, we observe that the interactionmatrixK does not depend on
the parameters ηi and òi describing the interactions.

Wewill show that, in order to coherently define a continuum limit of the kernel function appearing in aGLE
obtained through the elimination procedure, we have to normalize the equilibriummap aswe show in the
upcoming section.

2.2. Generalization of the equilibriummap
In order tomake our derivation as general as possible, we assume to have n heavy particle position-dependent
functions, XfI I

n
1{ ( )} = , such that each aimap can bewritten as a sumof these functionsweightedwith different

parameters i I, h Î which, in turn, represent the interaction strength.
Thus, we have:

a X Xf , 31i
I

n

i I I
1

,( ) ≔ ( ) ( )å h
=

Essentially, themain trick is to separate, in the equilibriummap, the dependence byX from the dependence by
the parameters ηi,I, so that the fI-functions do not depend on such parameters. Although each function fI could
have a genericX dependence, without loss of generality, we assume that only the gradient of the first function f1
equals the identitymatrix in 3 . These assumptions can be formalized as follows

X Xf f I N11 , 11 , 2, . 32X X I1
3 3( ) ( ) [ ] ( )  =  ¹ " Î

The specific case provided in equation (26) can be obtained from the definition (31) posing n= 2 and f1(X)≔ X
and f2(X)≔ X/∥X∥.

Therefore, in this setting, theHamiltonian function of the system is:

   
P X

P
X

I

q X K q X

H
M

V

f f

,
2 2

1

2
, . 33

I J

n

i j

N

i i I I ij j i J J

2 2

, 1 , 1
, ,

N3 3

3

( ) ( )

( ) ( ( )) ( )

 

å å h h

= + +

+ á - - ñ
= =

B

2.3. Alternative derivation
The systemofHamilton’s equations ofmotion (22) based on theHamiltonian (33)written as a systemof second
order differential equations reads:

X a X K Q a X Xt t t t V t , 34X Xt
T

ẗ ( ) ( ( )) ( ( ) ( ( ))) ( ( )) ( )( ) ( )=  - - 

Q K Q a Xt t t . 35̈ ( ) ( ( ) ( ( ))) ( )= - -

Wenote that equation (35) is linear in the heat bath-variablesQ, this allows us to apply the Laplace transform
method [24–26]. Hence, the Laplace transformof equation (35) is

Q K Q Q Ka Xs s s s11 0 0 . 362 1( ) ( ) [ ( ) ( ) ( ( ))] ( )= + + +~ ~-
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Then, applying the inverse Laplace transformwe get:

Q K Q K K Q K K a Xt t t t dcos 0 sin 0 sin , 37
t

1 2 1 2 1 2

0

1 2 1 2( ) ( ) ( ) ( ) ( ) ( ( )) ( ( )) ( )ò t t t= + + --

where thematrix-valued function is defined through the series representation:

K K K Kt
n

t t
n

tcos
1

2
, sin

1

2 1
.

n

n
n n

n

n
n n1 2

0

2 1 2

0

2 1( ) ( )
( )!

( ) ( )
( )!å å=

-
=

-
+=

¥

=

¥
+

In order to recover aGLE, in the convolution on the right-hand side the time derivative of the heavy particle
variable has to appear. Therefore, we notice that the kernelmatrix K K tsin1 2 1 2( ( ))t- can bewritten as the
derivative of K tcos 1 2( ( ))t- and an integration by parts leads to:





Q K Q K K Q a X K a X

K a X X

t t t t t

t d

cos 0 sin 0 cos

cos , 38X

t

1 2 1 2 1 2 1 2

0

1 2

( ) ( ) ( ) ( ) ( ) ( ( )) ( ( )) ( ( ))

( ( )) ( ( )) ( ) ( )( )ò
t

t t t t

= + + -

- -  t

-

where  a X a X XX( ( )) ( ( )) ( )( )t t t=  t .
Now,we note that the heat bath variable enter equation (34) under a specific combination, i.e.,K[Q(t)−

a(X(t))], but this relation can be obtained in equation (38) that is:

 K Q a X Q Q a X a X Xt t G t H t S t d0 0 0 ,

39

K K K X

t

0
[ ( ) ( ( ))] ( ) ( ) ( )( ( ) ( ( ))) [ ( ) ( ( ))] ( )

( )

( )ò t t t t- = + - - -  t

K K K K KH t t G t t S t tcos , sin , cos , 40K K K
1 2 1 2 1 2( ) ≔ ( ) ( ) ≔ ( ) ( ) ≔ ( ( )) ( )

Finally, we introduce a further canonical basis eI I
n

1{ } = of n which allows us to define, respectively, the parameter
matrix and the equilibriummap vector:

e e g X X ef, , 41
i

N

J

n

i J i J
I

n

I I
1 1

,
1

≔ ( ) ≔ ( ) ( )åå åhL Ä
= = =

such that

a X g X . 42X X( ) ( ) ( )L = 

Hence, we plug equation (39) into equation (34) andwe obtain:



X g X I Q a X

g X g X X X

M t t G t H t

t S t d V t

0 0 0

. 43

X K K

X K X X

t
T T

t

t
T T

t
0

̈ ( ) ( ( )) ( ( ) ( ) ( )[ ( ) ( ( ))])

( ( ))( ( ) ) ( ( )) ( ) ( ( )) ( )

( )

( ) ( ) ( )ò t t t t

L

L L

=  + -

-  -  - t

In order to recover the common structure of aGLE, we note that themathematical structure of the equation
obtained above allows to define the kernelmatrix and the noise term as follows:

L

F I Q a X

t S t

t G t H t

,

0 0 0 , 44
K

K K

T

T

( ) ≔ ( )
( ) ≔ ( ( ) ( ) ( )[ ( ) ( ( ))]) ( )
t tL L

L
- -

+ -

Wewish to stress a significant difference between the current definitions of noise vector and kernelmatrix in
equation (44) and the previous ones in equation (8) and (9). In the latter, the noise and kernel terms do not
contain any information about the strength of the interactions represented by the coefficients γi,I and all the
parameters γi,I are contained in the equilibriummap. In the former case, the parameters ηi,I have been
completely absorbed into the noise term and kernelmatrix.

Therefore, we can recast equation (43) into a nonlinearGLE:

X g X F g X L g X X XM t t t t t d V t . 45X X X Xt
T

t

t
T

t
0

̈ ( ) ( ( )) ( ) ( ( )) ( ) ( ( )) ( ) ( ( )) ( )( ) ( ) ( ) ( )ò t t t t=  -  -  - t

An important step forward in the investigation of stochastic behaviors arising from interactingHamiltonian
systemswould bemade if we could solve equation (45)which is a nonlinear stochastic differential equation.

Two different approaches could be employed. Fromone side, one can attempt a semi-analytical approach
exploiting the samemethod introduced in [34]. The authors showed that, even thoughwe have a nonlinear
differential equation, but we explicit know the time-dependence of the functions entering the equation2, we can
still apply the Laplace transformmethod to equation (45). However, this approach cannot always provide an
exact solution but a series representation of the solution is possible. So far, this approach has been applied just
for investigating nonlinear differential equations which are not stochastic but it could be extended to address
stochastic differential equation. Amore detailed studywill be done in a future paper.

2
In our case, this translates in choosing a specific potential function so that the equilibriummap is well-defined.
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Another possible approach is the numerical one. In particular, under suitable condition on the kernel
matrix, L(t− τ), a GLE can be converted into a stochastic Volterra equationwhere several numerical integration
schemes have been developed such as the Euler andMilstein scheme [35].

We now show that adopting definitions (44), one naturally recover the FDR.
Hence, let us consider the heat bathHamiltonian from equation (33), namely:

 
I Q

I
Q a X K Q a XH ,

2

1

2
, . 46

2
N

N
3

3( ) ( ) ( ( )) ( )
= + á - - ñP

The canonical probability density is given by:

X Q I
Z

e e0 0 , 0
1

, 47I I Q a X K Q a X, 0 0 , 0 0N N2 3 2 3( ( )∣ ( ) ( )) ≔ · ( )( ) ( ( )) ( ( ) ( ( ))) r - á ñ - á - - ñb b

whereZ is the canonical partition function

Q IZ e d d0 0 , 48I Q X0 , 0 , 0≔ ( ) ( ) ( )[ ( ( ) ( ) ( ))]ò b- HB

andwhereβ−1= kBT.
Let us note that, sinceX is heldfixed, we can introduce the following substitution:

x Q a X0 0 0 , 49( ) ≔ ( ) ( ( )) ( )-

which does not affect the integrationmeasure, i.e. dx(0)= dQ(0), thereby, the canonical partition and density
functions read:

X x I

x I

Z
e

Z e d d

0 0 , 0
1

,

0 0 , 50

I I x Kx

I I x Kx

, 0 , 0

, 0 , 0

N N

N N

2 3 3

2 3 3

( ( )∣ ( ) ( )) ≔

≔ ( ) ( ) ( )

( ( ) ( ) )

( ( ) ( ) )

 

 ò

r - á ñ -á ñ

- á ñ -á ñ

b

b

and the integrationmeasure assumesmanifestly aGaussian form.
By exploiting equation (49), the noise vector in equation (44) becomes:

F I xt G t H t0 0 , 51K K
T( ) ≔ ( ( ) ( ) ( ) ( )) ( )L +

and the computation of the second order correlation functions can be done easily [30]:

I x I I x x
K

x I0 0,
11

, , . 52
1N3

( )
b b

á ñ = á ñ = á Ä ñ = á Ä ñ = á Ä ñ =r r r r r

-

Furthermore, we notice that the noise, F, is amean-zero vector, namely: 〈F(t)〉ρ= 0. In order to explicitly write
thefluctuation-dissipation relation (noise autocorrelation function), wefirst expand the tensor product, i.e.:

F F I x I x

I I x x

x I I x

t G t H t G H

G t G H t H

H t G G t H

0 0 0 0

0 0 0 0

0 0 0 0 . 53

K K K K

K K K K

K K K K

T T T

T T T

T T

( ) ( ) ( ( ) ( ) ( ) ( )) ( ( ) ( ) ( ) ( ))
( ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

t t t

t t

t t

L L
L

L

Ä = + Ä +

= Ä + Ä

+ Ä + Ä

Thus, by exploiting equation (52), the average of the tensor product above becomes:

F F K Kt tcos , 54T1 1 2( ) ( ) ( ( )) ( )t b tL Lá Ä ñ = -r
-

wherewe used equation (40) and knowing that K tcos 1 2( ) and K tsin 1 2( ) commutewith any polynomial ofK.
We obtained in equation (54), thefluctuation-dissipation relation; in fact, by comparing the operator on the

right-hand side abovewith equation (44), we explicitly have:

F F Lt t . 551( ) ( ) ( ) ( )t b tá Ä ñ = -r
-

As proof of consistence and show-case example, let usfinally apply such a derivation to theHamiltonian
system in equation (12)proposed by Zwanzig. Thus, the equilibriummap is given by

a X X i N, 1, ,i
H i

i
2

( ) ≔ [ ]
h
w

" Î

whereas the interactionmatrixK is

K e e , 56
i

N

i i i
1

2≔ ( )å w Ä
=

In this setting, it consists in imposing f1(X)≔ Xwith i i i i,1
2h h h wº = and ηi,I= 0 for any I ä [2, n]. This

implies that thematrixΛ in equation (41) reduces to
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e e ,
i

N
i

i
i

1
2 1≔ å

h
w

L Ä
=

whereas

e eS t tsin . 57K
i

N

i i i i
1

2( ) ( ( )) ( )åt w w t- = - Ä
=

Therefore, the kernelmatrix reduces

L e et tcos , 58
i

N
i

i
i i i

1

2

2
( ) ≔ ( ( )) ( )åt

h

w
w t- - Ä

=

whose trace coincides with the ζZ function (15) in the Zwanzig’s result [31]. However, now, the continuum limit
can be computed.We conclude this section discussing the importance of including all the parameters
representing the interactions (in this case ηi) directly in the definitions of the kernelmatrix and noise terms In
particular, this can be appreciated as soon as one computes the continuum limit of the frictionmatrix, which
consists in assuming that the set of heat bath frequencies d i i

N
1≔ { }w =S becomes a continuum set ÌS

togetherwith a distribution function g(ω) of frequencies which depends on the specific interactions we
considered.

In this limit, one replaces the sumover the frequencies with an integral [31]:

g d ,
i

N

i
1

⟶ ( ) ( )òå h h w w w
= S

where i i
N

1{ }h = is any set of coefficients and η(ω) is the associated frequency-dependent function in the continuum
limit.

Now, if the kernel function is defined as in equation (17), i.e., without including the parameters γi, the
continuum limit, which reads:

t t g dcos ,2( ) ⟶ ( ( )) ( )òx t w w t w w- -
S

cannot provide a bounded continuous kernel function.
Conversely, including the coefficients γi in the kernel as in (18), one assumes that the set i i

N
1{ }g = becomes a

continuous function γ(ω) of the frequency variable, so that the continuum limit can be applied

t
t

g d
cos

, 59
2

2( ) ⟶ ( ( )) ( ) ( ) ( )òz t
w t
w

g w w w-
-

S

choosing γ such that it remains bounded asω→∞.
The degree of freedom represented by the γ function can befixed for requiring the boundedness of the kernel

function. In practice, the remaining effort consists in providing the correctmodeling, depending on the
interaction nature, of the function J(ω)≔ γ2(ω)g(ω) even called density function. with the existing techniques
already introduced in the literature [19].

3. Conclusion

Wehave showed that in order to obtain a kernelmatrix which contains the parameters of the interactions and,
thereby, that admits a thermodynamics limit as proposed by Zwanzig, we have to pay attention to the definition of
equilibriummap awhich plays a fundamental role.

In fact, itsmathematical structure needs to be specified somehow so to distinguish the contributions given
by the interaction parameters and the functional dependence onX. In so doing, one obtains a nonlinear
generalized Langevin equation (see equation (45))where the kernelmatrix and noise vector explicitly depend on
the parameters ηi,Iwhich is impossible to obtain if we followedZwanzig’s procedure as we have shown in the
introductory section. Finally, with these definitions, we can proceed in computing the continuum limit without
introducing further assumptions formaking the kernel function bounded.

Such a derivation could seem amatter of little consequence if we just have a heavy particle linearly
interactingwith a single heat bath system. In this case, it is always possible to understand how to readjust the
kernel function definition (9) in order to include the parameters. However, if we had different kinds of heat
bathswhich interact in a nonlinear waywith the heavy particle, the adjustment previouslymentioned cannot be
applied anymore but a different derivation as that proposed in this paper should be considered.
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