001     910421
005     20231027114346.0
024 7 _ |a 10.1111/febs.16617
|2 doi
024 7 _ |a 0014-2956
|2 ISSN
024 7 _ |a 0945-5795
|2 ISSN
024 7 _ |a 1432-1033
|2 ISSN
024 7 _ |a 1742-464X
|2 ISSN
024 7 _ |a 1742-4658
|2 ISSN
024 7 _ |a 2128/33926
|2 Handle
024 7 _ |a 36062330
|2 pmid
024 7 _ |a WOS:000855393100001
|2 WOS
037 _ _ |a FZJ-2022-03810
082 _ _ |a 610
100 1 _ |a Chaves, Gustavo
|0 P:(DE-Juel1)162433
|b 0
245 _ _ |a Unexpected expansion of the voltage‐gated proton channel family
260 _ _ |a Oxford [u.a.]
|c 2023
|b Wiley-Blackwell
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1676626120_13148
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Voltage-gated ion channels, whose first identified function was to generate action potentials, are divided into subfamilies with numerous members. The family of voltage-gated proton channels (HV) is tiny. To date, all species found to express HV have exclusively one gene that codes for this unique ion channel. Here we report the discovery and characterization of three proton channel genes in the classical model system of neural plasticity, Aplysia californica. The three channels (AcHV1, AcHV2, and AcHV3) are distributed throughout the whole animal. Patch-clamp analysis confirmed proton selectivity of these channels but they all differed markedly in gating. AcHV1 gating resembled HV in mammalian cells where it is responsible for proton extrusion and charge compensation. AcHV2 activates more negatively and conducts extensive inward proton current, properties likely to acidify the cytosol. AcHV3, which differs from AcHV1 and AcHV2 in lacking the first arginine in the S4 helix, exhibits proton selective leak currents and weak voltage dependence. We report the expansion of the proton channel family, demonstrating for the first time the expression of three functionally distinct proton channels in a single species.
536 _ _ |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524)
|0 G:(DE-HGF)POF4-5241
|c POF4-524
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Ayuyan, Artem G.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Cherny, Vladimir V.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Morgan, Deri
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Franzen, Arne
|0 P:(DE-Juel1)131923
|b 4
700 1 _ |a Fieber, Lynne
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Nausch, Lydia
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Derst, Christian
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Mahorivska, Iryna
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Jardin, Christophe
|0 P:(DE-HGF)0
|b 9
700 1 _ |a DeCoursey, Thomas E.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Musset, Boris
|0 P:(DE-HGF)0
|b 11
|e Corresponding author
773 _ _ |a 10.1111/febs.16617
|g p. febs.16617
|0 PERI:(DE-600)2172518-4
|n 4
|p 1008-1026
|t The FEBS journal
|v 290
|y 2023
|x 0014-2956
856 4 _ |u https://juser.fz-juelich.de/record/910421/files/The%20FEBS%20Journal%20-%202022%20-%20Chaves%20-%20Unexpected%20expansion%20of%20the%20voltage%E2%80%90gated%20proton%20channel%20family.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:910421
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131923
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5241
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-30
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-01-30
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-30
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-25
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-25
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b FEBS J : 2022
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-10-25
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b FEBS J : 2022
|d 2023-10-25
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBI-1-20200312
|k IBI-1
|l Molekular- und Zellphysiologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBI-1-20200312
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21