001     910424
005     20240625095110.0
024 7 _ |a 10.1002/wcms.1623
|2 doi
024 7 _ |a 1759-0876
|2 ISSN
024 7 _ |a 1759-0884
|2 ISSN
024 7 _ |a 2128/33785
|2 Handle
024 7 _ |a WOS:000810771100001
|2 WOS
037 _ _ |a FZJ-2022-03813
082 _ _ |a 540
100 1 _ |a van Keulen, Siri C.
|0 0000-0001-6995-8389
|b 0
245 _ _ |a Multiscale molecular simulations to investigate adenylyl cyclase‐based signaling in the brain
260 _ _ |a Malden, MA
|c 2023
|b Wiley-Blackwell
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1674469185_18525
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Open access publication
520 _ _ |a Adenylyl cyclases (ACs) play a key role in many signaling cascades. ACs catalyze the production of cyclic AMP from ATP and this function is stimulated or inhibited by the binding of their cognate stimulatory or inhibitory Gα subunits, respectively. Here we used simulation tools to uncover the molecular and subcellular mechanisms of AC function, with a focus on the AC5 isoform, extensively studied experimentally. First, quantum mechanical/molecular mechanical free energy simulations were used to investigate the enzymatic reaction and its changes upon point mutations. Next, molecular dynamics simulations were employed to assess the catalytic state in the presence or absence of Gα subunits. This led to the identification of an inactive state of the enzyme that is present whenever an inhibitory Gα is associated, independent of the presence of a stimulatory Gα. In addition, the use of coevolution-guided multiscale simulations revealed that the binding of Gα subunits reshapes the free-energy landscape of the AC5 enzyme by following the classical population-shift paradigm. Finally, Brownian dynamics simulations provided forward rate constants for the binding of Gα subunits to AC5, consistent with the ability of the protein to perform coincidence detection effectively. Our calculations also pointed to strong similarities between AC5 and other AC isoforms, including AC1 and AC6. Findings from the molecular simulations were used along with experimental data as constraints for systems biology modeling of a specific AC5-triggered neuronal cascade to investigate how the dynamics of downstream signaling depend on initial receptor activation.
536 _ _ |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524)
|0 G:(DE-HGF)POF4-5241
|c POF4-524
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Martin, Juliette
|0 0000-0002-4787-0885
|b 1
700 1 _ |a Colizzi, Francesco
|0 0000-0001-5601-1452
|b 2
700 1 _ |a Frezza, Elisa
|0 0000-0003-0122-7859
|b 3
700 1 _ |a Trpevski, Daniel
|0 0000-0001-9068-6744
|b 4
700 1 _ |a Diaz, Nuria Cirauqui
|0 0000-0003-4752-9916
|b 5
700 1 _ |a Vidossich, Pietro
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Rothlisberger, Ursula
|0 0000-0002-1704-8591
|b 7
|e Corresponding author
700 1 _ |a Hellgren Kotaleski, Jeanette
|0 0000-0002-0550-0739
|b 8
|e Corresponding author
700 1 _ |a Wade, Rebecca C.
|0 0000-0001-5951-8670
|b 9
|e Corresponding author
700 1 _ |a Carloni, Paolo
|0 P:(DE-Juel1)145614
|b 10
|e Corresponding author
773 _ _ |a 10.1002/wcms.1623
|0 PERI:(DE-600)2599565-0
|n 1
|p e1623
|t Wiley interdisciplinary reviews / Computational Molecular Science
|v 13
|y 2023
|x 1759-0876
856 4 _ |u https://juser.fz-juelich.de/record/910424/files/Invoice_4236971.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/910424/files/WIREs%20Comput%20Mol%20Sci%20-%202022%20-%20Keulen%20-%20Multiscale%20molecular%20simulations%20to%20investigate%20adenylyl%20cyclase%E2%80%90based%20signaling%20in.pdf
909 C O |o oai:juser.fz-juelich.de:910424
|p openaire
|p open_access
|p OpenAPC
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)145614
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5241
|x 0
914 1 _ |y 2023
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0
|0 LIC:(DE-HGF)CCBYNC4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-01-28
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-10-26
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b WIRES COMPUT MOL SCI : 2022
|d 2023-10-26
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b WIRES COMPUT MOL SCI : 2022
|d 2023-10-26
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-5-20120330
|k IAS-5
|l Computational Biomedicine
|x 0
920 1 _ |0 I:(DE-Juel1)INM-9-20140121
|k INM-9
|l Computational Biomedicine
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-5-20120330
980 _ _ |a I:(DE-Juel1)INM-9-20140121
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21