000910428 001__ 910428
000910428 005__ 20230224084247.0
000910428 0247_ $$2doi$$a10.1088/1361-6528/ac317f
000910428 0247_ $$2ISSN$$a0957-4484
000910428 0247_ $$2ISSN$$a1361-6528
000910428 0247_ $$2Handle$$a2128/33884
000910428 0247_ $$2pmid$$a34670198
000910428 0247_ $$2WOS$$aWOS:000714982600001
000910428 037__ $$aFZJ-2022-03817
000910428 082__ $$a530
000910428 1001_ $$00000-0003-3747-5627$$aTappertzhofen, S.$$b0$$eCorresponding author
000910428 245__ $$aMemristively programmable transistors
000910428 260__ $$aBristol$$bIOP Publ.$$c2022
000910428 3367_ $$2DRIVER$$aarticle
000910428 3367_ $$2DataCite$$aOutput Types/Journal article
000910428 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1676040259_25060
000910428 3367_ $$2BibTeX$$aARTICLE
000910428 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000910428 3367_ $$00$$2EndNote$$aJournal Article
000910428 520__ $$aWhen designing the gate-dielectric of a floating-gate-transistor, one must make a tradeoff between the necessity of providing an ultra-small leakage current behavior for long state retention, and a moderate to high tunneling-rate for fast programming speed. Here we report on a memristively programmable transistor that overcomes this tradeoff. The operation principle is comparable to floating-gate-transistors, but the advantage of the analyzed concept is that ions instead of electrons are used for programming. Since the mass of ions is significantly larger than the effective mass of electrons, gate-dielectrics with higher leakage current levels can be used. We demonstrate the practical feasibility of the device using a proof-of-concept study based on a micrometer-sized thin-film transistor and LT-Spice simulations of 32 nm transistors. Memristively programmable transistors have the potential of high programming endurance and retention times, fast programming speeds, and high scalability.
000910428 536__ $$0G:(DE-HGF)POF4-5233$$a5233 - Memristive Materials and Devices (POF4-523)$$cPOF4-523$$fPOF IV$$x0
000910428 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000910428 7001_ $$00000-0001-8800-2294$$aNielen, L.$$b1
000910428 7001_ $$0P:(DE-Juel1)131014$$aValov, I.$$b2
000910428 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b3
000910428 773__ $$0PERI:(DE-600)1362365-5$$a10.1088/1361-6528/ac317f$$gVol. 33, no. 4, p. 045203 -$$n4$$p045203 -$$tNanotechnology$$v33$$x0957-4484$$y2022
000910428 8564_ $$uhttps://juser.fz-juelich.de/record/910428/files/Nanotechnology%2033%284%29-045203%20%282022%29.pdf$$yOpenAccess
000910428 8564_ $$uhttps://juser.fz-juelich.de/record/910428/files/Tappertzhofen_2022_Nanotechnology_33_045203.pdf$$yRestricted
000910428 909CO $$ooai:juser.fz-juelich.de:910428$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000910428 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131014$$aForschungszentrum Jülich$$b2$$kFZJ
000910428 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131022$$aForschungszentrum Jülich$$b3$$kFZJ
000910428 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5233$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000910428 9141_ $$y2022
000910428 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-30
000910428 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-30
000910428 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-01-30
000910428 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-30
000910428 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-30
000910428 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000910428 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-30
000910428 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-30
000910428 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000910428 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-30
000910428 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANOTECHNOLOGY : 2019$$d2021-01-30
000910428 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2021-01-30$$wger
000910428 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000910428 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-30$$wger
000910428 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-30
000910428 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000910428 9201_ $$0I:(DE-Juel1)PGI-10-20170113$$kPGI-10$$lJARA Institut Green IT$$x1
000910428 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000910428 980__ $$ajournal
000910428 980__ $$aVDB
000910428 980__ $$aUNRESTRICTED
000910428 980__ $$aI:(DE-Juel1)PGI-7-20110106
000910428 980__ $$aI:(DE-Juel1)PGI-10-20170113
000910428 980__ $$aI:(DE-82)080009_20140620
000910428 9801_ $$aFullTexts