001 | 910428 | ||
005 | 20230224084247.0 | ||
024 | 7 | _ | |a 10.1088/1361-6528/ac317f |2 doi |
024 | 7 | _ | |a 0957-4484 |2 ISSN |
024 | 7 | _ | |a 1361-6528 |2 ISSN |
024 | 7 | _ | |a 2128/33884 |2 Handle |
024 | 7 | _ | |a 34670198 |2 pmid |
024 | 7 | _ | |a WOS:000714982600001 |2 WOS |
037 | _ | _ | |a FZJ-2022-03817 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Tappertzhofen, S. |0 0000-0003-3747-5627 |b 0 |e Corresponding author |
245 | _ | _ | |a Memristively programmable transistors |
260 | _ | _ | |a Bristol |c 2022 |b IOP Publ. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1676040259_25060 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a When designing the gate-dielectric of a floating-gate-transistor, one must make a tradeoff between the necessity of providing an ultra-small leakage current behavior for long state retention, and a moderate to high tunneling-rate for fast programming speed. Here we report on a memristively programmable transistor that overcomes this tradeoff. The operation principle is comparable to floating-gate-transistors, but the advantage of the analyzed concept is that ions instead of electrons are used for programming. Since the mass of ions is significantly larger than the effective mass of electrons, gate-dielectrics with higher leakage current levels can be used. We demonstrate the practical feasibility of the device using a proof-of-concept study based on a micrometer-sized thin-film transistor and LT-Spice simulations of 32 nm transistors. Memristively programmable transistors have the potential of high programming endurance and retention times, fast programming speeds, and high scalability. |
536 | _ | _ | |a 5233 - Memristive Materials and Devices (POF4-523) |0 G:(DE-HGF)POF4-5233 |c POF4-523 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Nielen, L. |0 0000-0001-8800-2294 |b 1 |
700 | 1 | _ | |a Valov, I. |0 P:(DE-Juel1)131014 |b 2 |
700 | 1 | _ | |a Waser, R. |0 P:(DE-Juel1)131022 |b 3 |
773 | _ | _ | |a 10.1088/1361-6528/ac317f |g Vol. 33, no. 4, p. 045203 - |0 PERI:(DE-600)1362365-5 |n 4 |p 045203 - |t Nanotechnology |v 33 |y 2022 |x 0957-4484 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/910428/files/Nanotechnology%2033%284%29-045203%20%282022%29.pdf |
856 | 4 | _ | |y Restricted |u https://juser.fz-juelich.de/record/910428/files/Tappertzhofen_2022_Nanotechnology_33_045203.pdf |
909 | C | O | |o oai:juser.fz-juelich.de:910428 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)131014 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)131022 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-523 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Neuromorphic Computing and Network Dynamics |9 G:(DE-HGF)POF4-5233 |x 0 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-01-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-01-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2021-01-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2021-01-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2021-01-30 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-01-30 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2021-01-30 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2021-01-30 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NANOTECHNOLOGY : 2019 |d 2021-01-30 |
915 | _ | _ | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |d 2021-01-30 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-30 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2021-01-30 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-01-30 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-7-20110106 |k PGI-7 |l Elektronische Materialien |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-10-20170113 |k PGI-10 |l JARA Institut Green IT |x 1 |
920 | 1 | _ | |0 I:(DE-82)080009_20140620 |k JARA-FIT |l JARA-FIT |x 2 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)PGI-7-20110106 |
980 | _ | _ | |a I:(DE-Juel1)PGI-10-20170113 |
980 | _ | _ | |a I:(DE-82)080009_20140620 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|