000910446 001__ 910446
000910446 005__ 20230228121550.0
000910446 0247_ $$2doi$$a10.1016/j.mtla.2022.101314
000910446 0247_ $$2Handle$$a2128/33774
000910446 0247_ $$2WOS$$aWOS:000793064300002
000910446 037__ $$aFZJ-2022-03835
000910446 1001_ $$0P:(DE-HGF)0$$aVimal, M.$$b0
000910446 245__ $$aGrain segmentation in atomistic simulations using orientation-based iterative self-organizing data analysis
000910446 260__ $$aAmsterdam$$bElsevier$$c2022
000910446 3367_ $$2DRIVER$$aarticle
000910446 3367_ $$2DataCite$$aOutput Types/Journal article
000910446 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1674638428_21221
000910446 3367_ $$2BibTeX$$aARTICLE
000910446 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000910446 3367_ $$00$$2EndNote$$aJournal Article
000910446 520__ $$aAtomistic simulations have now established themselves as an indispensable tool in understanding deformation mechanisms of materials at the atomic scale. Large scale simulations are regularly used to study the behavior of polycrystalline materials at the nanoscale. In this work, we propose a method for grain segmentation of an atomistic configuration using an unsupervised machine learning algorithm that clusters atoms into individual grains based on their orientation. The proposed method, called the Orisodata algorithm, is based on the iterative self-organizing data analysis technique and is modified to work in the orientation space. The working of the algorithm is demonstrated on a 122 grain nanocrystalline thin film sample in both undeformed and deformed states. The Orisodata algorithm is also compared with two other grain segmentation algorithms available in the open-source visualization tool Ovito. The results show that the Orisodata algorithm is able to correctly identify deformation twins as well as regions separated by low angle grain boundaries. The model parameters have intuitive physical meaning and relate to similar thresholds used in experiments, which not only helps obtain optimal values but also facilitates easy interpretation and validation of results.
000910446 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000910446 536__ $$0G:(EU-Grant)759419$$aMuDiLingo - A Multiscale Dislocation Language for Data-Driven Materials Science (759419)$$c759419$$fERC-2017-STG$$x1
000910446 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000910446 7001_ $$0P:(DE-Juel1)186075$$aSandfeld, S.$$b1
000910446 7001_ $$0P:(DE-HGF)0$$aPrakash, A.$$b2$$eCorresponding author
000910446 773__ $$0PERI:(DE-600)2953458-6$$a10.1016/j.mtla.2022.101314$$gVol. 21, p. 101314 -$$p101314 -$$tMaterialia$$v21$$x2589-1529$$y2022
000910446 8564_ $$uhttps://juser.fz-juelich.de/record/910446/files/1-s2.0-S2589152922000011-main.pdf$$yOpenAccess
000910446 909CO $$ooai:juser.fz-juelich.de:910446$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000910446 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186075$$aForschungszentrum Jülich$$b1$$kFZJ
000910446 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000910446 9141_ $$y2022
000910446 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-29
000910446 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000910446 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2020-08-29
000910446 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-29
000910446 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000910446 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-29
000910446 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-29
000910446 920__ $$lyes
000910446 9201_ $$0I:(DE-Juel1)IAS-9-20201008$$kIAS-9$$lMaterials Data Science and Informatics$$x0
000910446 9801_ $$aFullTexts
000910446 980__ $$ajournal
000910446 980__ $$aVDB
000910446 980__ $$aUNRESTRICTED
000910446 980__ $$aI:(DE-Juel1)IAS-9-20201008