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a b s t r a c t 

Atomistic simulations have now established themselves as an indispensable tool in understanding deformation 

mechanisms of materials at the atomic scale. Large scale simulations are regularly used to study the behavior 

of polycrystalline materials at the nanoscale. In this work, we propose a method for grain segmentation of an 

atomistic configuration using an unsupervised machine learning algorithm that clusters atoms into individual 

grains based on their orientation. The proposed method, called the Or isodata algorithm, is based on the iterative 

self-organizing data analysis technique and is modified to work in the orientation space. The working of the 

algorithm is demonstrated on a 122 grain nanocrystalline thin film sample in both undeformed and deformed 

states. The Or isodata algorithm is also compared with two other grain segmentation algorithms available in 

the open-source visualization tool Ovito . The results show that the Or isodata algorithm is able to correctly 

identify deformation twins as well as regions separated by low angle grain boundaries. The model parameters 

have intuitive physical meaning and relate to similar thresholds used in experiments, which not only helps obtain 

optimal values but also facilitates easy interpretation and validation of results. 
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. Introduction 

Polycrystalline materials, made of aggregates of single crystals or

rains, constitute a large fraction of materials used today. The properties

f such materials depend on the constituent microstructure, comprising

f topological entities such as grain interior, grain boundaries (GBs),

riple junctions and quadruple points. A well-known example is the Hall-

etch equation which relates the yield stress in the material to its mean

rain size [1] . 

Of particular interest have been nanocrystalline (NC) materials, with

ean grain sizes in the range of 10 ∼ 100 nm. The increased interest

n NC materials in recent years has been spurred both by advances in

rocessing and by insights obtained via computations [2–5] . Atomistic

imulations of the molecular dynamics/statics kind have played a key

ole in elucidating deformation mechanisms in NC materials [6,7] . Such

imulations have now clearly detailed the role of GBs in NC materials.

or instance, the negative Hall-Petch effect observed in almost all NC

aterials at very small grain sizes is due to a transition of deformation

echanism from dislocation mediated plasticity to that dominated by

rain boundary sliding [8,9] . Furthermore, GBs not only act as nucle-

tion sites for dislocations due to the absence of intra-granular sources

ike Frank-Read or spiral sources, defect structures at GBs such as ledges
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ct as effective pinning points for nucleated and/or propagating dislo-

ations [10–13] . 

It hence follows that understanding the influence of GBs and re-

ated topological entities is the key to obtaining structure property rela-

ionships for polycrystalline materials. An important task to this end in

tomistic simulations is the partitioning of atoms into grain interior and

rain boundary regions, and furthermore, to identify and track individ-

al grains. Conventional characterization methods, like common neigh-

or analysis (CNA) [14,15] , centrosymmetry parameter (CSP) [16] ,

oordination analysis (CA) based on the local structural environment

round an atom, or filtering methods based, e.g., on the potential en-

rgy of the atom, can be used to identify local crystal structure and

ssign atoms a corresponding label as “bulk ” or “defect ” atoms. Such an

pproach is taken by Tucker and Foiles [17] in their algorithm where fcc

toms (determined by CNA) are designated as grain-center or grain-edge

toms. But they are not universally applicable: CNA, CSP are not suit-

ble for cases with low angle GBs; CA does not identify coherent twin

oundaries. 

Identification of grains hence requires calculation of and account-

ng for an inherent property: orientation. The grain tracking algorithm

GTA) developed by Panzarino et al. [18,19] , involves the calculation

f a local per atom crystallographic orientation using the geometry of
alia Inc. This is an open access article under the CC BY-NC-ND license 
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he unit cell (obtained by CNA and CSP). This is followed by an itera-

ive process to identify individual grains as contiguous regions where

he misorientation between nearest neighbors of atoms is less than a

re-defined threshold. A similar approach is taken by Hoffrogge and

arrales-Mora [20] who suggest an additional “global ” criterion to track

he misorientation to the mean orientation of the grain. Such methods

re, however, sensitive to local perturbations in the structural environ-

ent resulting from, e.g., strain or temperature. 

Partitioning of a dataset into different clusters, e.g. grains, is a well

esearched unsupervised machine learning problem. The idea is to form

 cluster with data points that are as similar as possible to each other

ithin the cluster, whilst being as different as possible to data points in

 different cluster. The open-source visualization tool Ovito [21] pro-

ides implementations of two hierarchical clustering methods in its

rain segmentation modifier. The first approach is similar to the GTA

f Panzarino et al. [18,19] , but uses the minimum spanning tree rep-

esentation of the input structure, and additionally, computes the local

tomic orientation using the polyhedral template matching [22] algo-

ithm. The second approach also uses graph clustering, but with differ-

nt weights for the graph edges in comparison to the former. Grains are

ubsequently built by contracting graph edges using the node sampling

ethod [23] . With its automatic mode, the algorithm chooses a good

hreshold value using a sequence of graph merging steps. The drawback,

owever, is that the threshold value (in both automatic and manual) has

o intuitive physical meaning. 

In this work, we propose an alternative approach that uses a centroid

ased partitioning technique and shows advantages to the graph clus-

ering algorithms particularly for large datasets [24,25] . Our approach,

alled Or isodata algorithm, is based on the iterative self organizing

ata analysis ( isodata ) method [26] , an unsupervised learning algo-

ithm that is widely employed in remote sensing applications [27–30] .

n extension of the K-means algorithm, isodata method has the ad-

antage of automatically selecting the final number of clusters based

n certain heuristics. The self organizing capabilities and the ability to

plit clusters with larger spread and merge similar clusters based on the

hresholds are its key advantages. 

The Or isodata algorithm retains the basic structure of the isodata

lgorithm suggested by Ball et al. [26] , but modifies the split and merge

rocedures to account for the non-Euclidean nature of the orientation

pace. The method works for both undeformed and deformed states,

nd is able to identify both low angle GBs and twinned regions well.

n any clustering problem, the threshold parameters can have a sig-

ificant influence on the final clustering results and must be carefully

hosen [31,32] . Herein lies the advantage of the Or isodata algorithm:

he intuitive nature of the threshold parameters, which essentially split

nd merge clusters using orientation spread and misorientation between

lusters, help in obtaining optimal parameter values easily and ensure

obust and reliable results. 

. Details of the algorithm 

The generic isodata algorithm involves an iterative approach of

plitting clusters based on the standard deviation of the data points along

ach dimension, and merging two clusters based on their Euclidean

nter-cluster distance. A detailed description of the isodata algorithm

an be found in Ball et al. [26] . The overall idea is to reduce the variation

n each cluster and to combine similar clusters over the iterations. 

The basic steps involved in a generic isodata clustering algorithm

re, 

1. Randomly sample the initial centroids for the given initial number

of clusters 

2. Sort data points based on their proximity to the cluster centroids 

3. Recompute the cluster centroids 

4. Split clusters if the standard deviation along any dimension is greater

than the user defined split threshold 
2 
5. Merge pairs of clusters if their inter-cluster Euclidean distance is lower

than the user-defined merge threshold 

6. Go to step 2 until convergence is achieved 

.1. Orientation-based ISODATA clustering 

The use of standard deviation and the Euclidean distance metric

n the generic ISODATA algorithm, as measures for variation within a

luster and similarity between clusters, respectively, is insufficient for

dentifying grains based on orientations, since orientations do not reside

n Euclidean space. We hence propose a modified ISODATA algorithm

the Or isodata algorithm — by incorporating orientation-based met-

ics into the cluster split and merge procedures. The general structure

f the main program that executes the Or isodata algorithm is shown

n Algorithm 1 . 

Algorithm 1: Main program. 

Input : 

1. Atomistic configuration (AtomId, Position, Orientation) 

2. Lattice constant: 𝑎 0 
3. Lattice structure type: e.g. fcc/bcc/hcp 

4. Per-atom volume: 𝑉 𝑖 
5. Cluster split threshold angle (Maximum disorientation spread 

within agrain): Ψsplit 

6. Cluster merge threshold angle (Minimum disorientation angle 

between twograins): Φmerge 

7. Initial number of clusters: 𝑛 𝑖𝑛𝑖𝑡 
𝑐𝑙𝑢𝑠 

8. Minimum number of atoms per cluster or Minimum grain size: 

𝐷 

min 
𝑔 

9. Maximum number of iterations: 𝑛 𝑖𝑡𝑒𝑟 
10. Convergence tolerance: tol 

Output : Clusters (Grains) 

1 Data import; 

2 Extract bulk atoms (using Lattice structure type) from therest of 

the sample; 

3 Or isodata clustering → Algorithm 2; // Only the bulk atoms 

data are used as input for clustering 
4 for 𝑖 ← 1 to Number of orphan atoms do 

5 Assign orphan atom → Nearest large cluster 

6 end 

7 Merge clusters → Algorithm 4; // Iterative merge until no 

clusters get merged 
8 for 𝑗 ← 1 to No of clusters do 

9 Calculate geometric centroid of each cluster 

10 end 

11 Data export 

The input to the Or isodata clustering algorithm is a snapshot of an

tomistic simulation, which contains the positions, local crystal struc-

ure and orientation of individual atoms. We use the polyhedral template

atching algorithm (PTM) [22] as implemented in Ovito [21] to de-

ermine the local orientation and atomic structure of each atom. Atomic

olume is computed using a Voronoi tessellation. The structure of the

r isodata algorithm is shown in Algorithm 2 . 

Briefly, the program works as follows: atoms in the snapshot are first

lassified into bulk and non-bulk atoms using the local atomic structure

here, fcc). Subsequently, the Or isodata algorithm (see Algorithm 2 ) is

pplied on the bulk atoms, which organizes them into individual clus-

ers. Herein, all clusters that have fewer than a predefined number of

toms are designated as small/orphan clusters. In an iterative procedure,

arge (non-orphan) clusters are then split and merged using user-defined

hresholds for the same. The details of the split and merge routines are

resented below. Subsequently, all atoms in orphan clusters and non-

ulk atoms that were previously neglected, are assigned to a large clus-
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Algorithm 2: Or isodata clustering. 

Input : 1. Position and orientation of atoms, 2. Values of 

clustering parameters 

Output : 1. Clusters, 2. Mean orientations of large clusters 

1 Assign atoms to clusters randomly ; // Number of clusters, 
𝑛 𝑐𝑙𝑢𝑠 = 𝑛 𝑖𝑛𝑖𝑡 𝑐𝑙𝑢𝑠 

2 Calculate mean orientation of each cluster ; // L2-chordal mean 
and atomic volume as weights at every calculation 

3 for 𝑖 ← 1 to 𝑛 𝑖𝑡𝑒𝑟 do 

4 Calculate orientation distance of each atom to mean 

orientation of each individual cluster; 

5 Assign atoms to the nearest cluster based on orientation 

distance; 

6 Update mean orientation of each cluster; 

7 Ignore clusters with number of atoms < 𝐷 

min 
𝑔 

; // Data 
points in the ignored clusters are not deletedbut 
only ignored for the remaining iterations 

8 Update array of mean orientations and 𝑛 𝑐𝑙𝑢𝑠 ; // If number 
of ignored clusters ≥ 1 

9 Split clusters → Algorithm 3 if Clusters split then 

10 Update array of mean orientations and 𝑛 𝑐𝑙𝑢𝑠 ; 

11 Calculate orientation distance of each atom to the mean 

orientation of all clusters ; 

12 Assign atoms to the nearest cluster based on orientation 

distance; 

13 Update array of mean orientations and 𝑛 𝑐𝑙𝑢𝑠 
14 end 

15 Merge clusters → Algorithm 4Update array of mean 

orientations and 𝑛 𝑐𝑙𝑢𝑠 ; // If any cluster gets merged 
16 Δ mean orientation = Current mean orientation - Last mean 

orientation; 

17 Last mean orientation ← Current mean orientation ; 

18 if 

( 

i == 𝑛 𝑖𝑡𝑒𝑟 

) 

OR 

( 

absolute max ( Δ mean orientation) < = 

tol 

) 

then 

19 for 𝑗 ← 1 to 𝑛 𝑐𝑙𝑢𝑠 do 

20 Position based cluster split ; // mean of 1 𝑠𝑡 and 2 𝑛𝑑 

neighbor distance → Cut-off distance 
21 end 

22 Split clusters → Algorithm 3; // Iterative split 
until all the newly split (position based) 
clustersmaintain their grain orientation spread 
(GOS) lower than Ψsplit 

23 Append all the ignored clusters (line 7) to the array of 

currentclustersDesignate clusters as large and orphan 

clusters based on 𝐷 

min 
𝑔 

; 

24 Calculate mean orientation of each large cluster return 

Clusters, mean orientations of clusters 

25 end 

26 end 
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d  
er to which they are in close positional proximity. Finally, the average

rientation and center of mass of each cluster are calculated. 

The orientation distance metric used in the current work is the mis-

rientation angle defined via the geodesic distance metric [33,34] and

s given by the dot product of two orientations (here, quaternions) 𝑞 𝐴 
nd 𝑞 𝐵 as follows: 

= 2 cos −1 
(
𝑞 𝐴 ⋅ 𝑞 𝐵 

)
. (1)

urther details on the calculation of the orientation distance are pro-

ided in the supplementary material. 
3 
For calculating the mean orientation of each cluster, the chordal L2

ean (projected/induced arithmetic mean) [35,36] based on the cost

inimization method is used. The cost function is given by 

( 𝑅 ) = 

𝑛 ∑
𝑖 =1 

( 𝑅 𝑖 − 𝑅 ) 2 , (2)

here 𝑅 is the average orientation of a set of orientations ( 𝑅 𝑖 ) that

inimizes the cost function 𝐶( 𝑅 ) . 
After convergence, the final clusters are split based on their posi-

ional connectivity by analyzing the connected components in a sparse

raph, constructed using the atomic positions of each cluster [37] with

he neighbors of each atom within a given cutoff distance. Fig. 1 a shows

he position based cluster split of 3 regions having identical orientations,

s a result of which they would be classified to a single cluster. These

egions are, however, not directly connected to each other. The aver-

ge of the 1st and 2nd neighbor distance for the given lattice structure

ype is chosen as the neighbor cutoff distance (d cutoff) for evaluating the

onnectivity. 

.2. Cluster split 

The algorithm for splitting clusters using an orientation-based metric

s shown in Algorithm 3 . For computing the spread of orientations in

Algorithm 3: Split clusters. 

Input : 

1. Clusters 

2. Ψsplit 

Output : Clusters after split 

1 Function get GOS (Cluster) is 

2 Calculate orientation distance of all atoms with respect to the 

mean orientation(q 𝑚 ) of the given cluster; 

3 Find the corresponding orientation (q max ) that has the 

maximumorientation distance ( 𝜃max ); 

4 Calculate the GOS ( Ψspread ) fromthe orientation 

distances return q max , Ψspread ; 

5 end 

6 for 𝑖 ← 1 to Number of clusters do 

7 Call get GOS(i 𝑡ℎ cluster) if Ψspread > Ψsplit then 

8 Split cluster into two clusters; 

9 Assign q max and q 𝑚 as mean orientations of thenew 

clusters ; // Only for initial data sorting 
10 Assign atoms from the unsplit cluster to the new clusters 

by calculating theangle-based nearest-neighbor; 

11 end 

12 end 

ach cluster, the grain orientation spread (GOS) is used. This metric is

lso used to characterize deformed microstructures using electron back-

catter diffraction (EBSD) techniques [38–40] . The GOS ( Ψspread ) of a

luster is given by Allain-Bonasso et al. [41] : 

spread = 

1 
𝑁 

∑
𝑖 

𝜃𝑞 𝑖 ↔𝑞 𝑚 
, (3)

here 𝑁 is the number of orientations (atoms) in the cluster under con-

ideration and ( 𝜃𝑞 𝑖 ↔𝑞 𝑚 
) is the orientation distance between the orienta-

ion ( 𝑞 𝑖 ) of the atom and mean orientation ( 𝑞 𝑚 ) of the cluster. Fig. 1 b

hows a schematic of a cluster with dissimilar orientations split into

wo different clusters. All clusters satisfying the split condition, Ψspread >

split , are split into two different clusters. 

.3. Cluster merge 

Clusters are merged (see Algorithm 4 ) based on the inter-cluster

isorientation ( 𝜙) calculated using the mean orientations of the clus-
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Fig. 1. Schematic representation of the a) positional split, b) 

cluster split and c) cluster merge processes. 
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ers. Fig. 1 c shows a schematic of two clusters with similar orientations,

erged into a single cluster. Any two clusters satisfying the condition,

< = 𝜙𝑚𝑒𝑟𝑔𝑒 , with 𝜙𝑚𝑒𝑟𝑔𝑒 being the user-defined merge threshold, qual-

fy as a cluster pair for the merge operation. All such cluster pairs are

orted in ascending order of their disorientation angle ( 𝜙) to allow the

luster pairs having the lowest disorientation angle to merge first. Fi-

ally, for each of such cluster pair, if neither of the clusters is already

erged to other clusters and additionally, if the maximum spread an-

le ( Ψspread ) of the final cluster after merging is less than the user de-

ned split threshold angle ( Ψsplit ), they are merged together as a single

luster. This additional condition using the split threshold is to avoid

epeated split and merge of the same clusters over the iterations due to

he incompatible input threshold values, i.e. split threshold << merge

hreshold. 

. Methods for comparison 

To verify the working of our Or isodata algorithm, we compare the

esults with two other algorithms – automatic graph clustering and mini-

um spanning tree – implemented in the open-source visualization tool,

vito [21] . A common feature of both algorithms is that they use a

earest neighbor graph to perform agglomerative hierarchical cluster-

ng. These algorithms are available under the Grain Segmentation Mod-

fier in Ovito and are documented as “experimental ” versions in the

vito manual [42] . As a result, we only use them for comparing the

esults of our algorithm for a polycrystalline sample and do not under-

ake an in-depth study of the algorithms itself. For this study, the op-

ions Adopt orphan atoms and Handle coherent interfaces/stacking faults

re enabled. Note that these options are only available with the grain

egmentation algorithms of Ovito . The former option assigns orphan

toms at, e.g. GBs, to the nearest grain and is similar to the approach

sed in our Or isodata algorithm. The latter merges atoms having hcp
4 
rystal structure with atoms having cubic crystal structures at stacking

aults and/or other types of coherent interfaces [42] . This feature is,

owever, not a part of our Or isodata algorithm. 

.1. Graph clustering 

The graph clustering algorithm employs the node pair sampling

ethod [23] for building up the grains by contracting edges of a graph.

he edge weights of the graph are initialized as: 

 = exp 
(
− 𝜃2 ∕3 

)
, (4)

here 𝜃 is the misorientation angle in degrees between two neighbor-

ng atoms. The algorithm contains two clustering parameters - merge

hreshold and minimum number of atoms per grain . The merge threshold ,

owever, has no intuitive physical meaning [42] . The modifier in Ovito

llows for an automatic mode, where the merge threshold is chosen au-

omatically using a statistical analysis of a sequence of graph merging

teps; merging of clusters is stopped as soon as a deviation from the

egular exponential behavior is observed [42] . 

.2. Minimum spanning tree 

The second algorithm employs misorientation angles between neigh-

oring atoms as the edge weights of a minimum spanning tree. Grains

re built up by contracting edges in a sorted order based on misorienta-

ion, with the latter also acting as a measure of the merge distance. The

pproach is similar to that proposed by Panzarino and Rupert [18] but

ses a hierarchical graph which reduces computation times. The algo-

ithm is fast and has low memory usage. It is pointed out in the Ovito

anual [42] that this method can lead to poor results in the presence

f local perturbations due to, e.g., thermal noise. 
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Algorithm 4: Merge clusters. 

Input : 

1. Clusters 

2. Φmerge 

3. Ψsplit 

4. Positional connectivity flag ; // flag = True, only during 
merge clusters call from Algorithm 1 line 7 

Output : Clusters after merge 

1 for 𝑖 ← 1 to Number of clusters do 

2 Calculate disorientation angle ( 𝜙) between clusters with their 

meanorientations; 

3 end 

4 Find cluster pairs having 𝜙 < = Φmerge and sort these pairs based 

on their disorientation angle in ascendingorder; 

5 for 𝑖 ← 1 to Unique cluster pairs do 

6 if 

[ 
GOS ( Ψspread ) of the combined cluster aftermerge < = Ψsplit 

AND Both clusters remainunmerged in the current merge clusters 

routine call 

] 
then 

7 if (Positional connectivity flag == True) then 

8 Check the positional connectivity of the cluster pair; 

// To avoid re-mergingof clusters that were 
already positionally split 

9 if Connected then 

10 Merge the cluster pair 

11 end 

12 end 

13 else 

14 Merge the cluster pair 

15 end 

16 end 

17 end 

4
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. Testing and validation 

The Or isodata algorithm is first validated on a bicrystal dataset con-

aining a coherent twin boundary (CTB). For all validations, the max-

mum number of iterations and the convergence tolerance were set to

00 and 1e-5, respectively. All clustering results presented below are the

nal results obtained only after achieving convergence to the given tol-

rance value. Visualization of the data is performed using Ovito [21] . 

Fig. 2 a shows a Au bicrystal with a Σ3 (111) CTB constructed using

tomsk [43] . The sample has approximate dimensions of 25 x 56 x 7 nm 

3 

nd contains 600,000 atoms. Periodic boundary conditions are applied

n all directions. The bicrystal sample is then relaxed using the conju-

ate gradient and FIRE [44] minimization algorithms as implemented

n the atomistic simulation software LAMMPS [45,46] . The interatomic

orces are modeled with an embedded atom method (EAM) potential for

u [47] . Fig. 2 b,c show the orientations in the unrelaxed and relaxed

amples, respectively. 

The clustering parameters used for the validation of the Or isodata

lgorithm, unless specified otherwise, are: 

• Split threshold angle: Ψsplit = 0 . 001 ◦

• Merge threshold angle: Φmerge = 0 . 001 ◦
• Initial number of clusters: 𝑛 𝑖𝑛𝑖𝑡 

𝑐𝑙𝑢𝑠 
= 1 

• Minimum number of atoms per cluster: 𝐷 

min 
𝑔 

= 10 

The split and merge thresholds are set to very low numerical values

ince there exists almost no orientation spread in both the unrelaxed

s well as the relaxed samples. The initial number of clusters 𝑛 𝑖𝑛𝑖𝑡 
𝑐𝑙𝑢𝑠 

= 1
s chosen so as to avoid any bias in the final result, since the expected

umber of clusters is known. 
5 
Two further synthetic samples, with an artificial orientation spread

n each individual grain, are created to further validate the clustering

arameters. The first of the synthetic samples ( Fig. 2 d) has an orienta-

ion spread of ≈ 0 . 5 ◦ introduced linearly from the GB to the boundary of

he simulation box. The second synthetic sample has a central cylindri-

al region in each individual grain ( Fig. 2 e), with a disorientation angle

f approximately 9.5 ◦ to the surrounding matrix. 

The results from our Or isodata clustering are shown in Fig. 2 f–j.

or the unrelaxed and relaxed cases, the algorithm correctly identifies

wo clusters delimited by the CTB. For the case with a linear orientation

pread, the algorithm identifies four clusters. Increasing the split thresh-

ld ( Ψsplit ) beyond ≈ 0 . 125 ◦ results in the two clusters in the top and

ottom grain merging together to form a single individual grain. For the

ample with a cylindrical inclusion, we obtain as expected, four clusters

ith the inclusions identified as separate clusters. 

. Application on a polycrystalline sample 

We demonstrate the working of our Or isodata algorithm on a

anocrystalline thin film sample. The initial structure is generated by

eans of a constrained Voronoi tessellation [48,49] so as to reduce non-

quilibrium junctions [50] . The initial dimensions of the thin film are

80 x 120 x 15 nm 

3 and contains 122 grains with a mean grain diameter

f 15 nm. Each grain is assigned an orientation with < 111 > along the

lm thickness and a random rotation in the plane of the thin film, result-

ng in purely tilt grain boundaries in the structure. The atomistic struc-

ure generated using the open-source toolbox nano sculpt [51] contains

pproximately 19 Mio atoms (see Fig. 3 a). Periodic boundary conditions

PBC) are applied in the plane of the thin film; free boundaries exist

long the thickness of the film. 

The atomistic sample is then relaxed using the FIRE algorithm in

tandard molecular statics simulations, and subsequently equilibrated

nd thermalized at 300 K for 40 ps. Fig. 3 b,c shows the defect structure

computed using common neighbor analysis – and the orientations of

ndividual grains in the thin film. The equilibrated pressure-free struc-

ures are then subjected to uniaxial tension at a constant strain-rate of

0 8 𝑠 −1 . Simulations are performed with the ITAP molecular dynamics

IMD) code [52] . The interatomic forces are modeled with an EAM po-

ential for Au [53] . 

.1. Au undeformed polycrystalline thin film sample at 300 K 

The results of clustering obtained via the Or isodata algorithm on

he undeformed (relaxed + thermalized) sample are shown in Fig. 3 d–h.

he influence of the split and merge threshold values on the final cluster-

ng is clearly visible from the results. As the threshold values decrease,

he number of clusters increases. With parameter set #1, the Or isodata

lgorithm is able to identify clusters which conform approximately to

he orientation map in Fig. 3 c. For Φmerge ≤ 1 ◦ (see Fig. 3 e–g), small

lusters emerge at GBs and triple junctions (TJ), where the local ori-

ntation of individual atoms differs from the mean orientation of the

rains. 

Increasing the threshold for the minimum number of atoms per clus-

er to an equivalent grain size of 7 nm ensures that such small clusters

re now treated initially as orphan clusters and assigned to the closest

luster after the final iteration. Nonetheless, grains separated by very

ow angle GBs ( < 1 ◦) can still be identified, as shown exemplarily by

he highlighted grains in Fig. 3 h. Using threshold values beyond those

efined by the orientations of such grains results in the coalescence of

uch grain pairs to a single cluster, see highlighted boxes in Fig. 3 h. 

Since we do not expect the orientation of individual grains to change

s a result of relaxation and equilibration of the sample, atoms forming

he original grain must be assigned to a new distinct cluster, as long

s the threshold criteria are satisfied. This is evident in Fig. 4 b which

hows the fraction of atoms of each grain assigned to different clusters,

hus providing a measure of effectiveness of the algorithm. Such a plot
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Fig. 2. Results of validation and testing of our Or isodata algorithm. (a) Au bicrystal sample with a coherent twin boundary and colored based on common neighbor 

analysis (black: fcc, red: hcp). The orientation of the two grains is shown using the Thompson tetrahedron. The yellow solid lines indicate coherent atomic planes 

in the two grains. (b,c) Unrelaxed and relaxed samples colored based on orientation of individual atoms. (d) Synthetic bicrystal sample with an artificial orientation 

spread in each grain. (e) Synthetic bicrystal sample with a cylindrical inclusion with a misorientation of ≈ 9.5 ◦ from the matrix. (f–j) Clustering results with atoms 

colored according to their corresponding cluster numbers. 
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r  
s particularly helpful to track, e.g., whether the initial grains are split or

erged with the neighboring grains whilst being assigned to a cluster.

he diagonal trend indicates that by-and-large each grain is assigned

niquely to a new cluster. Multiple points along a single horizontal line

ndicate the coalescence of multiple grains into a single cluster. This is,

or instance, the case with grains 53, 98, 121 which are now assigned

o the cluster 53. Such merging of two or more grains is a result of very

ow misorientation between the grains, which is less than the threshold

f 2 ◦; the GBs between such grains contain no defect atoms as seen in

ig. 3 c. On the other hand multiple points along a single vertical line

ndicate that atoms in the original grain are split into multiple clusters

s a consequence of local rearrangement close to GBs. Only three grains

vidence a split where more than 10% of the original grain is assigned

o a neighboring cluster. 

The results of clustering with the grain segmentation algorithms in

vito are shown in Fig. 4 c–f. The automatic graph clustering (AGC)

lgorithm results in fewer clusters (64) than with our Or isodata al-

orithm (cf. Fig. 4 c). In particular, grains separated by low angle GBs

re organized to a single cluster with as many as five grains sometimes

rouped into a single cluster. Hence a significant deviation from a purely

iagonal trend is seen in the correlation plot shown in Fig. 4 d. The

hreshold value determined by the AGC algorithm is 22 units, which

esults in a misorientation angle of approximately ≈ 3 ◦ using Eq. (4) .

ncreasing the threshold value in Or isodata to 3 ◦ leads, expectedly, to

ewer number of 98 clusters, but is still much higher than that obtained

ith the AGC algorithm (see supplementary Fig. S5). 

By contrast, with the minimum spanning tree (MST) algorithm

ig. 4 e we obtain an almost equal number of clusters as with our

r isodata algorithm – 106 wth MST vs. 105 with Or isodata . The clus-

ering pattern obtained from the MST algorithm is very similar to that

bserved from our Or isodata algorithm. The low merge threshold of

 . 05 ◦ is seemingly the reason behind the ability to recognize low angle
 t  

6 
Bs that are apparently neglected with the AGC method. This threshold

alue is, however, not directly comparable with the merge threshold in

he Or isodata algorithm since the latter is a measure of distance be-

ween the mean orientations of two grains, whereas the former defines

 threshold for the misorientation between neighboring atoms. 

Despite these noticeable differences in the clustering results from the

hree algorithms, no large differences can be seen in the mean orienta-

ions of the identified clusters. The pole figures shown in supplementary

ig. S1 are very similar and show the presence of a {111} texture in the

hin film. 

.2. Au deformed polycrystalline thin film sample at 300 K 

The defect structure in the thin film sample, after 10% tensile strain

n the global y-direction, obtained via CNA is shown in Fig. 5 a. The

eformed configuration is dominated primarily by stacking faults and

eformation twins, which form via the motion of partial dislocations.

ery few full dislocations are visible. The orientation map (see Fig. 5 b)

hows a larger spread of orientations in many grains, than that seen in

he undeformed configuration. Twinned regions are visible as regions

ith a different orientation in comparison to the orientation of the par-

nt grain. It must be expected that a good grain segmentation algorithm

s able to identify such regions and help track the evolution of, e.g. twin

olume during deformation. 

Comparison of clustering results from Or isodata with those from

he grain segmentation algorithms in Ovito throws up some interesting

bservations, see Fig. 6 . The number of clusters identified by Or isodata

s significantly higher than the other two algorithms. A purely diagonal

rend in the correlation between the undeformed cluster/grain and the

dentified cluster ( Fig. 6 b,d,f) is no longer visible in any of the algo-

ithms. This observation can be ascribed to the larger spread of orien-

ation gradients in many grains, as a result of which, atoms belonging
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Fig. 3. Au polycrystalline thin film undeformed sample at 300 K (sliced in the thickness for better visualization). (a) Thin film sample with 122 grains. Atoms are 

colored according to their initial grain numbers. (b) CNA results from OVITO (Color code for atoms: black - fcc, red - hcp, grey - others). (c) Orientations of individual 

grains in the thin film sample (in terms of quaternions) of individual atoms are converted and represented in RGB values. The white lines with red marker connect 

regions with symmetrically equivalent orientations. (d–h) Clustering results with five different parameter sets. Atoms are colored according to their cluster numbers. 

Higher threshold values result in coalescence of certain grain pairs as shown in (h). 
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o individual undeformed grains/clusters are split into multiple clusters

n the deformed state. Furthermore, many clusters have now formed

ia the conglomeration of multiple initial grains, indicating significant

hanges in GB characteristics, topology and network. Of the two algo-

ithms in Ovito , the AGC method performs better than the minimum

panning tree approach in identifying local twinned regions. We note

hat the option Handle coherent interfaces/stacking faults is switched on

uring clustering with the grain clustering algorithms in Ovito . Turning

his option off results in improved identification of the twinned regions

ith the AGC method (see supplementary Fig. S2). No change in the iden-

ification of twins is seen with the MST algorithm, but switching off the

ption results in substantially more clusters (see supplementary Fig. S2).

The mean orientations of individual clusters confirm the aforemen-

ioned observations. With the MST algorithm, almost no change is ob-

erved in the overall texture (cf. supplementary Fig. S3). By comparison,

 strong deviation from the strong initial {111} texture is observed in

 few clusters (mostly corresponding to deformation twins) with both

r isodata and the AGC algorithms. The few points which deviate from

s

7 
he initial {111} texture with the MST algorithm correspond to a single

win identified by the algorithm. 

. Discussion 

The primary difference between the grain segmentation algorithms

n Ovito and our Or isodata algorithm is in the approach taken. With

he graph based methods implemented in Ovito , a more-or-less bottom-

p approach is forged, wherein clustering begins by the creation of a

raph representation of the input structure using atoms as the graph

odes and the bonds with neighbors as the graph edges. If the threshold

riterion is satisfied, graph edges are collapsed resulting in a hierarchical

lustering of individual grains. By contrast, in the Or isodata algorithm

e follow a top-down approach. Clustering begins directly in the data

pace without reference to individual atoms. Clusters are then split and

erged if certain criteria are met. The reference to individual atoms

ppears only now: If a cluster has multiple distinct regions which are

ot connected to each other in terms of immediate neighbors, we split

uch clusters further. 
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Fig. 4. Comparison of clustering results from 

Or isodata algorithm with those from grain 

segmentation algorithms in Ovito . left : Indi- 

vidual clusters colored by their mean orienta- 

tions by mapping the corresponding quater- 

nion ( 𝑞 𝑥 , 𝑞 𝑦 , 𝑞 𝑧 , 𝑞 𝑤 ) to red,green and blue val- 

ues, respectively. right : Correlation plot be- 

tween initial grain number and the final clus- 

ter identified by the corresponding algorithm. 

 

r  

c  

o  

o  

u  

r  

p  

A  

3  
Despite the different approaches taken, the working of the algo-

ithms can be understood by comparing the characteristics of the output

lusters and evaluating the influence of the corresponding parameters

n the clustering. One aspect of the clustering process is the treatment

f orphan atoms. Figs. 7 and 8 show the clustered configurations of the
8 
ndeformed and deformed samples, respectively, from the three algo-

ithms, before the adoption of orphan atoms. It is evident that for the

arameter sets chosen, the fewest number of orphan atoms is with the

GC method and the highest with the MST algorithm. Approximately

5% of the undeformed sample and 65% of the deformed sample is iden-
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Fig. 5. Au deformed polycrystalline thin film sample (Sample has been sliced in the Z direction for better visualization). (a) CNA results from Ovito (Color code 

for atoms: black - fcc, red - hcp, grey - others). (b) Orientations (in terms of quaternions) of individual atoms are converted and represented in RGB values. Some of 

the stacking fault regions present within the grains are highlighted. (c–f) Clustering results with four different parameter sets. Atoms are colored according to their 

mean orientations. 
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ified as orphan atoms with the MST algorithm (see Figs. 7 f and 8 f). The

umber of orphan atoms with the Or isodata algorithm is close to that

f the AGC method; the slight differences seen in the distributions are

scribed to the chosen parameter set which results in many more clus-

ers being identified with our Or isodata algorithm in comparison to

he AGC method. 

This increased fraction of orphan atoms is directly responsible for the

oor identification of deformation twins with the MST algorithm. With
9 
ll the three algorithms, stacking faults are identified as orphan atoms

ue to their hcp crystal structure. However, with MST, regions around

cp atoms are also identified as orphan atoms. These orphan atoms are

ater assigned to a parent cluster, resulting in twinned regions appearing

uch larger or being completely assimilated into the parent grain. 

The threshold parameter used in the MST algorithm evidences a

igh-sensitivity to small perturbations. Choosing the right threshold pa-

ameter in the MST algorithm can hence be quite tricky, as seen in sup-



M. Vimal, S. Sandfeld and A. Prakash Materialia 21 (2022) 101314 

Fig. 6. Comparison of clustering results from Or isodata algorithm with those from grain segmentation algorithms in Ovito on the Au polycrystalline sample 

deformed to 10% tensile strain. left : Individual clusters colored by their corresponding mean orientation. right : Correlation plot between initial grain number and the 

final cluster identified by the corresponding algorithm. 

10 
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Fig. 7. Comparison of clustering results on the undeformed sample of Or isodata algorithm with the grain clustering algorithms in OVITO. The samples are 

sliced in the thickness for better visualization. (a) Clustering results from Or isodata for the parameter set #6. Disorientation angles and the color map showing 

the quaternion component having maximum variation between the sub-clusters formed within grains, are highlighted separately. (b) Clustering results from graph 

clustering (automatic). (c) Clustering results from minimum spanning tree algorithm. (d) Intra cluster disorientation. (e) Disorientation between neighboring clusters. 

(f) Distribution of percentage of parent atoms (non-orphan atoms) in individual clusters. The threshold values used for the corresponding algorithms are marked in 

vertical lines. Color code in (a–c) - Atoms are colored according to their cluster numbers except the orphan atoms which are colored in light gray. 
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lementary Fig. S4. For the deformed configuration, the chosen value of

 

◦ results in the best clustering pattern that is comparable with the other

lgorithms, as shown in Fig. 6 . Decreasing the threshold to 0 . 9 ◦ results

n almost equal number of clusters, but significantly different clustering

attern. Increasing the threshold to 1 . 1 ◦ results in a higher number of

lusters, see supplementary Fig. S4. This behavior is non-intuitive, since

e expect the number of clusters to either increase or remain constant

ith a decrease in the threshold value, and can again be attributed to

he presence of large number of orphan atoms with the MST algorithm.

ecreasing the minimum number of atoms per cluster to 1000 reduces

he number of orphan atoms and results in the expected behavior of in-
11 
reased number of clusters with a lower threshold. The predicted clus-

ers, however, are quite different to those observed with the AGC and

r isodata algorithms. 

A quantitative comparison of the three algorithms can be made by

ooking into the intra-cluster disorientation, and the inter-cluster dis-

rientation between immediate neighbors of a cluster. The results of

uch a comparison is shown in Figs. 7 and 8 for the undeformed and

eformed samples, respectively. With MST and Or isodata algorithms

here criteria can be specified, such threshold criteria are well satis-

ed. The intra cluster disorientation in terms of GOS is higher than the

hreshold of 0.05 ◦ between atoms in the case of the MST algorithm in
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Fig. 8. Comparison of clustering characteristics from Or isodata , graph clustering and minimum spanning tree algorithms in the strained sample. The samples are 

sliced in the thickness for better visualization. (a–c) Clusters determined by the three different algorithms before the adoption of orphan atoms. Cluster numbers for 

the parameter set #7 is shown in (a). (d) Intra cluster disorientation. (e) Disorientation between neighboring clusters. (f) Distribution of percentage of parent atoms 

(non-orphan atoms) in individual clusters. The threshold values used for the corresponding algorithms are marked in vertical lines. Color code in (a–c) - Atoms are 

colored according to their cluster numbers except the unadopted atoms which are colored in light gray. 
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he undeformed configuration. This seemingly translates to a maximum

OS of 1 . 5 ◦ and an average value of 0 . 1 ◦ in the formed clusters. With

he AGC algorithm, the maximum GOS observed was close to 6 ◦. 
In the deformed configuration, a threshold of 1 ◦ with the MST al-

orithm results in a maximum intra-cluster disorientation of roughly

0 ◦. In comparison, the maximum GOS is ≈ 30 ◦ with the AGC model,

hich is, however, an artifact of hcp atoms identified as part of the

arent cluster. The inter-cluster disorientations evidence a distribution

ver a range of angles, similar to that seen in the undeformed config-
12 
ration; both Or isodata and AGC algorithms result in higher number

f clusters with large inter-cluster disorientations due to their ability

o identify twinned regions. The Or isodata algorithm is, furthermore,

learly able to identify clusters with low angle inter-cluster disorienta-

ions, whereas very few of such clusters were identified with the AGC

odel (see Fig. 8 e). 

Using the manual version of the grain clustering algorithm can pro-

ide the user with increased flexibility in identifying clusters. Decreasing

he threshold value results, as expected, in increased number of clusters
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see supplementary Fig. S6). However, the non-physical nature of the

hreshold used to collapse graph nodes essentially hinders robust inter-

retation and verification of results. With the undeformed configuration,

 threshold of 22 units was used to generate the clustering results shown

n Fig. 4 c, which translates to a disorientation angle of approximately

 

◦, suggesting a minimum inter-cluster disorientation of the same mea-

ure. By fine tuning the parameters in the Or isodata algorithm, we

ere able to drastically reduce the number of clusters to match that

f the graph clustering algorithm (see supplementary Fig. S7). A similar

lustering pattern was only obtained for split and merge thresholds of

0 ◦ with our Or isodata algorithm. Furthermore, with the graph clus-

ering algorithm, whilst clusters with intra-cluster disorientations of as

igh as ≈ 4 ◦ are identified as a single cluster, clusters with lower intra-

luster disorientation of ≈ 3 . 2 are split into two clusters whose inter-

luster disorientation is a mere 1 . 2 ◦. This essentially leads us to con-

lude that the threshold parameter in the graph clustering algorithm,

nd consequently, the clustering results, lack simple interpretation. 

The clustering results with our Or isodata algorithm depend

trongly on the two threshold parameters – higher numerical values

f these thresholds result in fewer number of final clusters, and vice

ersa. The choice of numerical values for the thresholds depends, how-

ver, on the sample and application at hand. For example, to identify

ow angle GBs, the merge threshold must be set to a low value that cor-

esponds to the disorientation between two neighboring grains. On the

ther hand, the split threshold influences the position of a GB in a contigu-

us domain with significant orientation gradients. In other words, the

ntra-cluster disorientation must be less than the split threshold and the

nter-cluster disorientation between nearest neighbors must be greater

han the merge threshold. In both the undeformed and deformed con-

gurations, the results clearly follow this rule, see Fig. 7 d,e and 8 d,e. 

Two further parameters form a part of the Or isodata algorithm:

a) Minimum number of atoms or minimum grain size ( 𝐷 

min 
𝑔 

) for any

luster to be accepted as a possible solution, (b) Initial number of clus-

ers ( 𝑛 𝑖𝑛𝑖𝑡 
𝑐𝑙𝑢𝑠 

). The former has an effect on the fraction of orphan atoms, and

liminates the formation of very small clusters (see Fig. 3 g,h). Neverthe-

ess, for the same threshold parameters, the influence of the minimum

rain size on the clustering results is negligible. The influence of the lat-

er parameter, 𝑛 𝑖𝑛𝑖𝑡 
𝑐𝑙𝑢𝑠 

, depends on the orientation gradients in the sample

larger the gradients in orientation, larger is the influence on the final

umber of clusters, as is the case with the deformed thin film sample

see supplementary Fig. S9). Nevertheless, this variation is less than ±5%
ndicating the robustness of the entire procedure. 

The advantage of the Or isodata algorithm over the other two al-

orithms is in the intuitive nature of the threshold parameters which is

xpressed as follows: 

• Split threshold : How much of a deviation from the mean orientation

is to be allowed within the domain of the grain 

• Merge threshold : How close in terms of orientation should two neigh-

boring grains/clusters be in order for them to be treated as a single

grain 

This intuitiveness of the parameters ensures easy verification and

nterpretation of results. Furthermore, these threshold parameters are

imilar in interpretation to those used in experiments (e.g. EBSD) mak-

ng the methodology appealing to a larger user base and facilitating

ncreased synergy between simulations and experiments. 

. Conclusions 

In this work, we propose an orientation-based iterative self orga-

izing data analysis (Or isodata ) algorithm to identify grains in atom-

stic simulations of polycrystalline materials. The algorithm takes a data

ased approach to cluster points in the orientation space. We first val-

date the algorithm on a bicrystal sample containing a coherent twin

oundary. Subsequently, the working of the Or isodata is demonstrated

n a polycrystalline thin film sample in the undeformed state as well as
13 
he deformed state after 10% tensile strain at 300 K. Furthermore, the

esults from our Or isodata algorithm are compared with those from

he automatic graph clustering and minimum spanning tree algorithms

mplemented in Ovito . With the latter, we are able to identify very low

ngle GBs which was not possible with the AGC algorithm. On the other

and, deformation twins are not identified by the MST algorithm, but

ere clearly identified by the AGC algorithm. 

The findings of the current study can be summarized as follows: 

• The Or isodata algorithm uses parameters which are intuitive and

physically relevant for the application. This makes it substantially

easy to choose optimal parameters, and to validate and interpret the

clustering results. 

• Very low angle grain boundaries, i.e. inter-cluster disorientation less

than 2 ◦ can be identified with both the Or isodata and the MST

algorithms, but not with the AGC algorithm. 

• Twinned regions in the deformed polycrystalline thin film are identi-

fied with the Or isodata and AGC algorithms, but not with the MST

algorithm. 

• The proportion of atoms identified as orphan atoms is a significant

influencing factor on the clustering results of the three algorithms.

Perturbations due to the applied strain and local elastic fields can

result in a significant fraction of atoms – 60 ∼70% fraction – in the

deformed thin film being classified as orphan atoms with the MST

algorithm. 

• A smaller fraction of orphan atoms is the key to proper identification

of twinned regions in the deformed state of the polycrystal. Thin

twinned regions are otherwise classified as orphan atoms and are

later assigned to the nearest cluster. 

• Choosing the right parameter set for the usage of the AGC algorithm

is particularly difficult since the threshold parameter has no intu-

itive meaning. Furthermore, intra-cluster grain orientation spread

and inter-cluster disorientation distributions are also not along ex-

pected lines. 

The two threshold parameters in the Or isodata algorithm are in-

uitive and relate to similar thresholds used in experiments: the split

hreshold is a measure of the maximum orientation spread within a grain,

hereas the merge threshold is a measure of proximity between the mean

rientation of two grains. We conclude that although the choice of the

arameter values strongly influences the clustering results, as is the

ase with any algorithm, having model parameters that are intuitive

nd physically relevant to the application, is substantially helpful for

hoosing optimal parameter values and also for analyzing and rightly

nterpreting the final results. 
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