000910448 001__ 910448
000910448 005__ 20230517203031.0
000910448 0247_ $$2doi$$a10.1016/j.actamat.2022.118394
000910448 0247_ $$2ISSN$$a1359-6454
000910448 0247_ $$2ISSN$$a1873-2453
000910448 0247_ $$2Handle$$a2128/33777
000910448 0247_ $$2WOS$$aWOS:000878787500003
000910448 037__ $$aFZJ-2022-03837
000910448 082__ $$a670
000910448 1001_ $$0P:(DE-Juel1)186837$$aZhang, Chen$$b0
000910448 245__ $$aData-mining of in-situ TEM experiments: On the dynamics of dislocations in CoCrFeMnNi alloys
000910448 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2022
000910448 3367_ $$2DRIVER$$aarticle
000910448 3367_ $$2DataCite$$aOutput Types/Journal article
000910448 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1674638664_22568
000910448 3367_ $$2BibTeX$$aARTICLE
000910448 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000910448 3367_ $$00$$2EndNote$$aJournal Article
000910448 520__ $$aHigh entropy alloys are a class of materials with many significant improvements in terms of mechanical properties as compared to “classical” alloys. The corresponding structure-property relations are not yet entirely clear, but it is commonly believed that the good mechanical performance is strongly related to dislocation interactions with the complex energy landscape formed due to alloying. Although in-situ Transmission Electron Microscopy (TEM) allows high-resolution studies of the structure and dynamics of moving dislocations and makes the local obstacle/energy “landscape” directly visible in the geometry of dislocations; such observation, however, are merely qualitative, and detailed three-dimensional analyses of the interaction between dislocations and the energy landscape is still missing. In this work, we utilized dislocations as “probes” for the local energy maxima which play the role of pinning points for the dislocation movement. To this end, we developed a unique data-mining approach that can perform coarse-grained spatio-temporal analysis, making ensemble averaging of a considerable number of snapshots possible. We investigate the effect of pinning points on the dislocation gliding behavior of CoCrFeMnNi alloy during in-situ TEM straining and find that (i) the pinning point strength changes when dislocations glide through and (ii) the pinning point moves along the direction close to the Burgers vector direction. Our data-mining method can be applied to dislocation motion in general, making it a useful tool for dislocation research.
000910448 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000910448 536__ $$0G:(EU-Grant)759419$$aMuDiLingo - A Multiscale Dislocation Language for Data-Driven Materials Science (759419)$$c759419$$fERC-2017-STG$$x1
000910448 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000910448 7001_ $$0P:(DE-HGF)0$$aSong, Hengxu$$b1
000910448 7001_ $$0P:(DE-HGF)0$$aOliveros, Daniela$$b2
000910448 7001_ $$0P:(DE-HGF)0$$aFraczkiewicz, Anna$$b3
000910448 7001_ $$0P:(DE-HGF)0$$aLegros, Marc$$b4
000910448 7001_ $$0P:(DE-Juel1)186075$$aSandfeld, Stefan$$b5$$eCorresponding author
000910448 773__ $$0PERI:(DE-600)2014621-8$$a10.1016/j.actamat.2022.118394$$gVol. 241, p. 118394 -$$p118394 -$$tActa materialia$$v241$$x1359-6454$$y2022
000910448 8564_ $$uhttps://juser.fz-juelich.de/record/910448/files/1-s2.0-S1359645422007728-main.pdf$$yOpenAccess
000910448 8767_ $$d2023-05-17$$eHybrid-OA$$jZahlung erfolgt$$zUmbuchung
000910448 909CO $$ooai:juser.fz-juelich.de:910448$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000910448 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186837$$aForschungszentrum Jülich$$b0$$kFZJ
000910448 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b1$$kExtern
000910448 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186075$$aForschungszentrum Jülich$$b5$$kFZJ
000910448 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000910448 9141_ $$y2022
000910448 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-28
000910448 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-28
000910448 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-01-28
000910448 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000910448 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-28
000910448 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-28
000910448 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACTA MATER : 2019$$d2021-01-28
000910448 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000910448 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000910448 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-28
000910448 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACTA MATER : 2019$$d2021-01-28
000910448 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000910448 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-28
000910448 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-28
000910448 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000910448 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000910448 920__ $$lyes
000910448 9201_ $$0I:(DE-Juel1)IAS-9-20201008$$kIAS-9$$lMaterials Data Science and Informatics$$x0
000910448 9801_ $$aFullTexts
000910448 980__ $$ajournal
000910448 980__ $$aVDB
000910448 980__ $$aUNRESTRICTED
000910448 980__ $$aI:(DE-Juel1)IAS-9-20201008
000910448 980__ $$aAPC