001     910448
005     20230517203031.0
024 7 _ |a 10.1016/j.actamat.2022.118394
|2 doi
024 7 _ |a 1359-6454
|2 ISSN
024 7 _ |a 1873-2453
|2 ISSN
024 7 _ |a 2128/33777
|2 Handle
024 7 _ |a WOS:000878787500003
|2 WOS
037 _ _ |a FZJ-2022-03837
082 _ _ |a 670
100 1 _ |a Zhang, Chen
|0 P:(DE-Juel1)186837
|b 0
245 _ _ |a Data-mining of in-situ TEM experiments: On the dynamics of dislocations in CoCrFeMnNi alloys
260 _ _ |a Amsterdam [u.a.]
|c 2022
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1674638664_22568
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a High entropy alloys are a class of materials with many significant improvements in terms of mechanical properties as compared to “classical” alloys. The corresponding structure-property relations are not yet entirely clear, but it is commonly believed that the good mechanical performance is strongly related to dislocation interactions with the complex energy landscape formed due to alloying. Although in-situ Transmission Electron Microscopy (TEM) allows high-resolution studies of the structure and dynamics of moving dislocations and makes the local obstacle/energy “landscape” directly visible in the geometry of dislocations; such observation, however, are merely qualitative, and detailed three-dimensional analyses of the interaction between dislocations and the energy landscape is still missing. In this work, we utilized dislocations as “probes” for the local energy maxima which play the role of pinning points for the dislocation movement. To this end, we developed a unique data-mining approach that can perform coarse-grained spatio-temporal analysis, making ensemble averaging of a considerable number of snapshots possible. We investigate the effect of pinning points on the dislocation gliding behavior of CoCrFeMnNi alloy during in-situ TEM straining and find that (i) the pinning point strength changes when dislocations glide through and (ii) the pinning point moves along the direction close to the Burgers vector direction. Our data-mining method can be applied to dislocation motion in general, making it a useful tool for dislocation research.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a MuDiLingo - A Multiscale Dislocation Language for Data-Driven Materials Science (759419)
|0 G:(EU-Grant)759419
|c 759419
|f ERC-2017-STG
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Song, Hengxu
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Oliveros, Daniela
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Fraczkiewicz, Anna
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Legros, Marc
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Sandfeld, Stefan
|0 P:(DE-Juel1)186075
|b 5
|e Corresponding author
773 _ _ |a 10.1016/j.actamat.2022.118394
|g Vol. 241, p. 118394 -
|0 PERI:(DE-600)2014621-8
|p 118394 -
|t Acta materialia
|v 241
|y 2022
|x 1359-6454
856 4 _ |u https://juser.fz-juelich.de/record/910448/files/1-s2.0-S1359645422007728-main.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:910448
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)186837
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)186075
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2021-01-28
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-28
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ACTA MATER : 2019
|d 2021-01-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-28
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACTA MATER : 2019
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-28
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-9-20201008
|k IAS-9
|l Materials Data Science and Informatics
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-9-20201008
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21