000910455 001__ 910455 000910455 005__ 20230123110703.0 000910455 0247_ $$2doi$$a10.22331/q-2022-01-24-630 000910455 0247_ $$2Handle$$a2128/32136 000910455 0247_ $$2WOS$$aWOS:000750588700001 000910455 037__ $$aFZJ-2022-03844 000910455 082__ $$a530 000910455 1001_ $$0P:(DE-Juel1)185935$$aLi, Boxi$$b0$$eCorresponding author 000910455 245__ $$aPulse-level noisy quantum circuits with QuTiP 000910455 260__ $$aWien$$bVerein zur Förderung des Open Access Publizierens in den Quantenwissenschaften$$c2022 000910455 3367_ $$2DRIVER$$aarticle 000910455 3367_ $$2DataCite$$aOutput Types/Journal article 000910455 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1666867625_27097 000910455 3367_ $$2BibTeX$$aARTICLE 000910455 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000910455 3367_ $$00$$2EndNote$$aJournal Article 000910455 520__ $$aThe study of the impact of noise on quantum circuits is especially relevant to guide the progress of Noisy IntermediateScale Quantum (NISQ) computing. In this paper, we address the pulse-level simulation of noisy quantum circuits with the Quantum Toolbox in Python (QuTiP). We introduce new tools in qutip-qip, QuTiP’s quantum information processing package.These tools simulate quantum circuits at the pulse level, leveraging QuTiP’s quantum dynamics solvers and control optimization features. We show how quantum circuits can be compiled on simulated processors, with control pulses acting on a target Hamiltonian that describes the unitary evolution of the physical qubits. Various types of noise can be introduced based on the physical model, e.g., by simulating the Lindblad densitymatrix dynamics or Monte Carlo quantum trajectories. In particular, the user can define environment induced decoherence at the processor level and include noise simulation at the level of control pulses. We illustrate how the DeutschJozsa algorithm is compiled and executed on a superconducting-qubit-based processor, on a spin-chain-based processor and using control optimization algorithms. We also show how to easily reproduce experimental results on cross-talk noise in an ion-based processor, and how a Ramsey experiment can be modeled with Lindblad dynamics. Finally, we illustrate how to integrate these features with other software frameworks. 000910455 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0 000910455 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 000910455 7001_ $$0P:(DE-HGF)0$$aAhmed, Shahnawaz$$b1$$eCorresponding author 000910455 7001_ $$0P:(DE-HGF)0$$aSaraogi, Sidhant$$b2 000910455 7001_ $$0P:(DE-HGF)0$$aLambert, Neill$$b3 000910455 7001_ $$0P:(DE-HGF)0$$aNori, Franco$$b4 000910455 7001_ $$0P:(DE-HGF)0$$aPitchford, Alexander$$b5 000910455 7001_ $$0P:(DE-HGF)0$$aShammah, Nathan$$b6$$eCorresponding author 000910455 773__ $$0PERI:(DE-600)2931392-2$$a10.22331/q-2022-01-24-630$$gVol. 6, p. 630 -$$p630 -$$tQuantum$$v6$$x2521-327X$$y2022 000910455 8564_ $$uhttps://juser.fz-juelich.de/record/910455/files/528773_Fulltext.pdf$$yOpenAccess 000910455 909CO $$ooai:juser.fz-juelich.de:910455$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000910455 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185935$$aForschungszentrum Jülich$$b0$$kFZJ 000910455 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b1$$kExtern 000910455 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a 2Department of Microtechnology and Nanoscience, Chalmers University of Technology, 412 96 Gothenburg, Sweden$$b1 000910455 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b2$$kExtern 000910455 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department of Computer Science, Georgetown University, 3700 O St NW, Washington, DC 20057, United States$$b2 000910455 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b3$$kExtern 000910455 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan$$b3 000910455 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b4$$kExtern 000910455 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan$$b4 000910455 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b5$$kExtern 000910455 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department of Mathematics, Aberystwyth University, Penglais Campus, Aberystwyth, SY23 3BZ, Wales, United Kingdom$$b5 000910455 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b6$$kExtern 000910455 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Unitary Fund, Walnut, California 91789, USA$$b6 000910455 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0 000910455 9141_ $$y2022 000910455 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2021-02-02 000910455 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02 000910455 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-02 000910455 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000910455 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-02 000910455 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02 000910455 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bQUANTUM-AUSTRIA : 2021$$d2022-11-15 000910455 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-15 000910455 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2019-06-12T07:01:21Z 000910455 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2019-06-12T07:01:21Z 000910455 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2019-06-12T07:01:21Z 000910455 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-15 000910455 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-15 000910455 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-15 000910455 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bQUANTUM-AUSTRIA : 2021$$d2022-11-15 000910455 920__ $$lno 000910455 9201_ $$0I:(DE-Juel1)PGI-8-20190808$$kPGI-8$$lQuantum Control$$x0 000910455 980__ $$ajournal 000910455 980__ $$aVDB 000910455 980__ $$aUNRESTRICTED 000910455 980__ $$aI:(DE-Juel1)PGI-8-20190808 000910455 9801_ $$aFullTexts